欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

1.由6根鋼管首尾順次鉸接而成六邊形鋼架ABCDEF,相鄰兩鋼管可以轉(zhuǎn)動(dòng).已知各鋼管的長(zhǎng)度為AB=DE=1米,BC=CD=EF=FA=2米.(鉸接點(diǎn)長(zhǎng)度忽略不計(jì))
(1)轉(zhuǎn)動(dòng)鋼管得到三角形鋼架,如圖1,則點(diǎn)A,E之間的距離是$\frac{8}{3}$米.
(2)轉(zhuǎn)動(dòng)鋼管得到如圖2所示的六邊形鋼架,有∠A=∠B=∠C=∠D=120°,現(xiàn)用三根鋼條連接頂點(diǎn)使該鋼架不能活動(dòng),則所用三根鋼條總長(zhǎng)度的最小值是3$\sqrt{7}$米.

分析 (1)只要證明AE∥BD,得$\frac{AE}{DB}$=$\frac{AF}{FB}$,列出方程即可解決問(wèn)題.
(2)分別求出六邊形的對(duì)角線并且比較大小,即可解決問(wèn)題.

解答 解:(1)如圖1中,∵FB=DF,F(xiàn)A=FE,
∴∠FAE=∠FEA,∠B=∠D,
∴∠FAE=∠B,
∴AE∥BD,
∴$\frac{AE}{DB}$=$\frac{AF}{FB}$,
∴$\frac{AE}{4}$=$\frac{2}{3}$,
∴AE=$\frac{8}{3}$,
故答案為$\frac{8}{3}$.
(2)如圖中,作BN⊥FA于N,延長(zhǎng)AB、DC交于點(diǎn)M,連接BD、AD、BF、CF.
在RT△BFN中,∵∠BNF=90°,BN=$\frac{\sqrt{3}}{2}$,F(xiàn)N=AN+AF=$\frac{1}{2}$+2=$\frac{5}{2}$,
∴BF=$\sqrt{B{N}^{2}+N{F}^{2}}$=$\sqrt{7}$,同理得到AC=DF=$\sqrt{7}$,
∵∠ABC=∠BCD=120°,
∴∠MBC=∠MCB=60°,
∴∠M=60°,
∴CM=BC=BM,
∵∠M+∠MAF=180°,
∴AF∥DM,∵AF=CM,
∴四邊形AMCF是平行四邊形,
∴CF=AM=3,
∵∠BCM=∠CBD+∠CDB=60°,∠CBD=∠CDB,
∴∠CBD=∠CDB=30°,∵∠M=60°,
∴∠MBD=90°,
∴BD=$\sqrt{D{M}^{2}-B{M}^{2}}$=2$\sqrt{3}$,同理AE=2$\sqrt{3}$,
∵$\sqrt{7}$<3<2$\sqrt{3}$,
∴用三根鋼條連接頂點(diǎn)使該鋼架不能活動(dòng),
∴連接AC、BF、DF即可,
∴所用三根鋼條總長(zhǎng)度的最小值3$\sqrt{7}$,
故答案為3$\sqrt{7}$.

點(diǎn)評(píng) 本題考查三角形的穩(wěn)定性、平行線的性質(zhì)、平行四邊形的判定和性質(zhì)、勾股定理.等邊三角形的判定和性質(zhì)等知識(shí),解題的關(guān)鍵是添加輔助線構(gòu)造特殊三角形以及平行四邊形,屬于中考常考題型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.現(xiàn)規(guī)定:min(a:b)=$\left\{\begin{array}{l}{b(a>b)}\\{a(a<b)}\end{array}\right.$,例如(1:2)=1:min(8:6)=6.按照上面的規(guī)定,方程min(x:-x)=$\frac{2x+1}{x}$的根是( 。
A.1-$\sqrt{2}$B.-1C.1±$\sqrt{2}$D.1$±\sqrt{2}$或-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

12.若解關(guān)于x的方程$\frac{x+3}{x-1}=\frac{m+1}{x-1}$產(chǎn)生增根,則m的值為3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖,已知⊙O為△ABC的外接圓,且AB為⊙O的直徑,若OC=5,AC=6,則BC長(zhǎng)為( 。
A.10B.9C.8D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,△ABC與△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為( 。
A.25:9B.5:3C.$\sqrt{5}$:$\sqrt{3}$D.5$\sqrt{5}$:3$\sqrt{3}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖,矩形ABCD中,點(diǎn)E為BC上一點(diǎn),F(xiàn)為DE的中點(diǎn),且∠BFC=90°.
(1)當(dāng)E為BC中點(diǎn)時(shí),求證:△BCF≌△DEC;
(2)當(dāng)BE=2EC時(shí),求$\frac{CD}{BC}$的值;
(3)設(shè)CE=1,BE=n,作點(diǎn)C關(guān)于DE的對(duì)稱點(diǎn)C′,連結(jié)FC′,AF,若點(diǎn)C′到AF的距離是$\frac{2\sqrt{10}}{5}$,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.如圖,以AB為直徑,點(diǎn)O為圓心的半圓經(jīng)過(guò)點(diǎn)C,若AC=BC=$\sqrt{2}$,則圖中陰影部分的面積是( 。
A.$\frac{π}{4}$B.$\frac{1}{2}$$+\frac{π}{4}$C.$\frac{π}{2}$D.$\frac{1}{2}$+$\frac{π}{2}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

10.先化簡(jiǎn):$\frac{{x}^{2}+x}{{x}^{2}-2x+1}$÷($\frac{2}{x-1}$-$\frac{1}{x}$),然后再?gòu)?2<x≤2的范圍內(nèi)選取一個(gè)合適的x的整數(shù)值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

11.如圖,在矩形ABCD中,AB=3,對(duì)角線AC,BD相交于點(diǎn)O,AE垂直平分OB于點(diǎn)E,則AD的長(zhǎng)為3$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案