【題目】已知,點(diǎn)B在線段CE上.
(感知)(1)如圖①,∠C=∠ABD=∠E=90°,易知△ACB∽△AED(不要求證明);
(拓展)(2)如圖②,△ACE中,AC=AE,且∠ABD=∠E,求證:△ACB∽△BED;
(應(yīng)用)(3)如圖③,△ACE為等邊三角形,且∠ABD=60°,AC=6,BC=2,則△ABD與△BDE的面積比為 .
![]()
【答案】(1)見解析;(2)見解析;(3)7:2
【解析】
(1)由∠C=∠ABD=∠E=90°知∠A+∠ABC=∠ABC+∠DBE=90°,據(jù)此得∠A=∠DBE,從而得證.
(2)由∠C=∠ABD=∠E與∠ABE=∠C+∠CAB,∠ABE=∠ABD+∠DBE,即可求得∠CAB=∠DBE,即可證得:△ACB∽△BED.
(3)由△ACB∽△BED,根據(jù)相似三角形的對(duì)應(yīng)邊成比例,可求得△ABC與△BDE的面積比,△ABC與△ABE的面積比,繼而求得答案.
(1)∵∠C=∠ABD=∠E=90°,
∴∠A+∠ABC=∠ABC+∠DBE=90°,
∴∠A=∠DBE,
∴△ACB∽△BED;
(2)∵AC=AE,
∴∠C=∠E,
∵∠ABD=∠E,
∴∠C=∠ABD,
又∵∠ABE=∠C+∠CAB,∠ABE=∠ABD+∠DBE,
∴∠CAB=∠DBE,
∴△ACB∽△BED;
(3)∵∠ABE=∠C+∠CAB,∠ABE=∠ABD+∠DBE,∠C=∠ABD,
∴∠CAB=∠DBE,
∵∠C=∠E=60°,
∴△ACB∽△BED,△ACE是等邊三角形,
∴AE=AC=6,
∴BE=CE﹣BC=4,
∴△ACB與△BED的相似比為:3:2,
∴S△ABC:S△BED=9:4,S△ABC:S△ABE=1:2=9:18,
設(shè)S△ABC=9x,則S△ABE=18x,S△BDE=4x,
∴S△ABD=S△ABE﹣S△BED=18x﹣4x=14x,
∴S△ABD:S△BDE=14:4=7:2.
故答案為:7:2.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)
的坐標(biāo)為
,以點(diǎn)
為圓心,8為半徑的圓與
軸交于
,
兩點(diǎn),過
作直線
與
軸負(fù)方向相交成
的角,且交
軸于
點(diǎn),以點(diǎn)
為圓心的圓與
軸相切于點(diǎn)
.
![]()
(1)求直線
的解析式;
(2)將
以每秒1個(gè)單位的速度沿
軸向左平移,當(dāng)
第一次與
外切時(shí),求
平移的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將一長方形紙片
放在平面直角坐標(biāo)系中,
,
,
,動(dòng)點(diǎn)
從點(diǎn)
出發(fā)以每秒1個(gè)單位長度的速度沿
向終點(diǎn)
運(yùn)動(dòng),運(yùn)動(dòng)
秒時(shí),動(dòng)點(diǎn)
從點(diǎn)
出發(fā)以相同的速度沿
向終點(diǎn)
運(yùn)動(dòng),當(dāng)點(diǎn)
、
其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).
![]()
設(shè)點(diǎn)
的運(yùn)動(dòng)時(shí)間為
:(秒)
(1)
_________,
___________(用含
的代數(shù)式表示)
(2)當(dāng)
時(shí),將
沿
翻折,點(diǎn)
恰好落在
邊上的點(diǎn)
處,求點(diǎn)
的坐標(biāo)及直線
的解析式;
(3)在(2)的條件下,點(diǎn)
是射線
上的任意一點(diǎn),過點(diǎn)
作直線
的平行線,與
軸交于
點(diǎn),設(shè)直線
的解析式為
,當(dāng)點(diǎn)
與點(diǎn)
不重合時(shí),設(shè)
的面積為
,求
與
之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
與一次函數(shù)
的圖象交點(diǎn)為
,
,且二次函數(shù)的最小值為
,則這個(gè)二次函數(shù)的解析式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線
與直線
交于點(diǎn)
,
.
求拋物線的解析式.
點(diǎn)
是拋物線上
、
之間的一個(gè)動(dòng)點(diǎn),過點(diǎn)
分別作
軸、
軸的平行線與直線
交于點(diǎn)
、
,以
、
為邊構(gòu)造矩形
,設(shè)點(diǎn)
的坐標(biāo)為
,求
,
之間的關(guān)系式.
將射線
繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)
后與拋物線交于點(diǎn)
,求
點(diǎn)的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,P是BC的中點(diǎn),把△PAB沿著PA翻折得到△PAE,過C作CF⊥DE于F,若CF=2,則DF=_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某自動(dòng)化車間計(jì)劃生產(chǎn)480個(gè)零件,當(dāng)生產(chǎn)任務(wù)完成一半時(shí),停止生產(chǎn)進(jìn)行自動(dòng)化程序軟件升級(jí),用時(shí)20分鐘,恢復(fù)生產(chǎn)后工作效率比原來提高了
,結(jié)果完成任務(wù)時(shí)比原計(jì)劃提前了40分鐘,求軟件升級(jí)后每小時(shí)生產(chǎn)多少個(gè)零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】利用“同角的余角相等”可以幫助我們得到相等的角,這個(gè)規(guī)律在全等三角形的判定中有著廣泛的運(yùn)用.
(1)如圖①,
,
,
三點(diǎn)共線,
于點(diǎn)
,
于點(diǎn)
,
,且
.若
,求
的長.
(2)如圖②,在平面直角坐標(biāo)系中,
為等腰直角三角形,直角頂點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
.求直線
與
軸的交點(diǎn)坐標(biāo).
(3)如圖③,
,
平分
,若點(diǎn)
坐標(biāo)為
,點(diǎn)
坐標(biāo)為
.則
.(只需寫出結(jié)果,用含
,
的式子表示)
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com