【題目】如圖,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,點O是AB中點,連接OH,則OH= . ![]()
【答案】![]()
【解析】解:在BD上截取BE=CH,連接CO,OE,
∵∠ACB=90°CH⊥BD,
∵AC=BC=3,CD=1,
∴BD=
,
∴△CDH∽△BDC,
∴
,
∴CH=
,
∵△ACB是等腰直角三角形,點O是AB中點,
∴AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,
∴∠OCH+∠DCH=45°,∠ABD+∠DBC=45°,
∵∠DCH=∠CBD,∴∠OCH=∠ABD,
在△CHO與△BEO中,
,
∴△CHO≌△BEO,
∴OE=OH,∠BOE=∠HOC,
∵OC⊥BO,
∴∠EOH=90°,
即△HOE是等腰直角三角形,
∵EH=BD﹣DH﹣CH=
﹣
﹣
=
,
∴OH=EH×
=
,
故答案為:
.![]()
在BD上截取BE=CH,連接CO,OE,根據(jù)相似三角形的性質(zhì)得到
,求得CH=
,根據(jù)等腰直角三角形的性質(zhì)得到AO=OB=OC,∠A=∠ACO=∠BCO=∠ABC=45°,等量代換得到∠OCH=∠ABD,根據(jù)全等三角形的性質(zhì)得到OE=OH,∠BOE=∠HOC推出△HOE是等腰直角三角形,根據(jù)等腰直角三角形的性質(zhì)即可得到結(jié)論.本題考查了相似三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),正確的作出輔助線構(gòu)造全等三角形是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,直線l與⊙O相切于點C,AD⊥l,垂足為D,AD交⊙O于點E,連接OC、BE.若AE=6,OA=5,則線段DC的長為 . ![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的圓O與AD、AC分別交于點E、F,且∠ACB=∠DCE.![]()
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB=
,BC=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形EFGH內(nèi)接于△ABC,且邊FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=
EH,那么EH的長為 . ![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD,BE.
(1)求證:CE=AD;
(2)當D為AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形ABCD的邊長為3,E是BC上一點,BE=
,Q是CD上一動點,將△CEQ沿直線EQ折疊后,點C落在點P處,連接PA,點Q從點C出發(fā),沿線段CD向點D運動,當PA的長度最小時,CQ的長為( ) ![]()
A.3
﹣3
B.3﹣ ![]()
C.![]()
D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB和CD交于點O,∠COE=90°,OC平分∠AOF,∠COF=35°.
(1)求∠BOD的度數(shù);
(2)OE平分∠BOF嗎?請說明理由.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com