【題目】在正方形
中,
是邊
上一點(diǎn)(點(diǎn)
不與點(diǎn)
重合),連接
.
(感知)如圖1,過點(diǎn)
作
交
于點(diǎn)
.易證
.(不需要證明)
![]()
(探究)如圖2,取
的中點(diǎn)
,過點(diǎn)
作
交
于點(diǎn)
,交
于點(diǎn)
.
(1)求證:
.
(2)連接
.若
,則
的長(zhǎng)為___________.
![]()
(應(yīng)用)如圖3,取
的中點(diǎn)
,連接
.過點(diǎn)
作
交
于點(diǎn)
,連接
.若
,則四邊形
的面積為______.
![]()
【答案】【探究】(1)見解析;(2)2;【應(yīng)用】9.
【解析】
(1)過A作
,根據(jù)AD//BC,可證明四邊形AHFG是平行四邊形,可得AH=GF,由GF⊥BE可得AH⊥BE,利用直角三角形兩銳角互余的性質(zhì)可得∠BAH=∠CBE,利用ASA可證明△ABH≌△BCE,即可證明BE=AH,進(jìn)而可得BE=FG;(2)連接CM,由(1)可知BE=FG,根據(jù)直角三角形斜邊中線的性質(zhì)可求出BE的長(zhǎng),即可得答案;【應(yīng)用】根據(jù)直角三角形斜邊中線的性質(zhì)可得BE=6,ME=3,利用ASA可證明△BCE≌△CDG,可得BE=CG,利用三角形面積公式即可得答案.
(1)如圖,過A作
,
∵AD//BC,AH//GF,
∴四邊形AHFG是平行四邊形,
∴
.
∵
,
∴
,
∴
.
∵四邊形
是正方形,
∴
,
,
∴
,
∴
.
在
和
中,
,
,
,
∴
.
∴
,
∴
.
![]()
(2)連接CM,
∵∠BCD=90°,點(diǎn)M為BE中點(diǎn),CM=1,
∴BE=2CM=2,
由(1)得BE=FG,
∴FG=2.
![]()
【應(yīng)用】
在
中,
,
是
邊上的中線,
∴
.
∵∠DCG+∠BCG=90°,∠CBE+∠BCG=90°,
∴∠DCG+∠CBE,
又∵BC=CD,∠BCE=∠CDG=90°,
∴
,
∴
.
又∵
,且
,
∴
.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下面所給的平面直角坐標(biāo)系中,解答下列問題
(1)描出點(diǎn)A(﹣2,0),B(2,﹣1),C(3,3),并用線段依次連接起來.
(2)將三角形ABC向左平移2個(gè)單位長(zhǎng)度,再向下平移3個(gè)單位長(zhǎng)度,得到三角形A′B′C′.
(3)寫出三角形A′B′C′各個(gè)頂點(diǎn)的坐標(biāo).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)家吳文俊院士非常重視古代數(shù)學(xué)家賈憲提出的“從長(zhǎng)方形對(duì)角線上任一點(diǎn)作兩條分別平行于兩鄰邊的直線,則所容兩長(zhǎng)方形面積相等(如圖所示)”這一推論,他從這一推論出發(fā),利用“出入相補(bǔ)”原理復(fù)原了《海島算經(jīng)》九題古證. (以上材料來源于《古證復(fù)原的原理》、《吳文俊與中國數(shù)學(xué)》和《古代世界數(shù)學(xué)泰斗劉徽》)
請(qǐng)根據(jù)該圖完成這個(gè)推論的證明過程.![]()
證明:S矩形NFGD=S△ADC﹣(S△ANF+S△FGC),S矩形EBMF=S△ABC﹣(+).
易知,S△ADC=S△ABC , = , = .
可得S矩形NFGD=S矩形EBMF .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC,∠A=36°,直線MN垂直平分AC交AB于M,
![]()
(1)求∠BCM的度數(shù);(2)若AB=5,BC=3,求△BCM的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC邊上的一個(gè)動(dòng)點(diǎn),將△ABD沿BD所在直線折疊,使點(diǎn)A落在點(diǎn)P處.
(1)如圖1,若點(diǎn)D是AC中點(diǎn),連接PC.![]()
①寫出BP,BD的長(zhǎng);
②求證:四邊形BCPD是平行四邊形.
(2)如圖2,若BD=AD,過點(diǎn)P作PH⊥BC交BC的延長(zhǎng)線于點(diǎn)H,求PH的長(zhǎng).![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠C=90°,BE平分∠ABC,DF平分∠CDA.
(1)求證:BE∥DF;
(2)若∠ABC=56°,求∠ADF的大。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D、E分別在邊AB、CB上,CD=DE,∠CDB=∠DEC,過點(diǎn)C作CF⊥DE于點(diǎn)F,交AB于點(diǎn)G,
(1)求證:△ACD≌△BDE;
(2)求證:△CDG為等腰三角形.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com