【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為x=1,給出下列結(jié)論:①abc>0;②當x>2時,y>0;③3a+c>0;④3a+b>0.其中正確的結(jié)論有( ) ![]()
A.①②
B.①④
C.①③④
D.②③④
【答案】C
【解析】解:∵二次函數(shù)的圖象的開口向上,
∴a>0,
∵二次函數(shù)的圖象y軸的交點在y軸的負半軸上,
∴c<0,
∵二次函數(shù)圖象的對稱軸是直線x=1,
∴﹣
=1,
∴2a+b=0,b<0,
∴abc>0,∴①正確;
∵二次函數(shù)y=ax2+bx+c圖象可知,當x>2時,y有小于0的情況,
∴②錯誤;
∵當x=﹣1時,y>0,
∴a﹣b+c>0,
把b=﹣2a代入得:3a+c>0,
∴③正確;
∵二次函數(shù)圖象的對稱軸是直線x=1,
∴﹣
=1,
∴2a+b=0,
∵a>0,
∴3a+b>0,故④正確.
故選C.
【考點精析】掌握二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系和拋物線與坐標軸的交點是解答本題的根本,需要知道二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c);一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.
科目:初中數(shù)學 來源: 題型:
【題目】若a=0.32,b=﹣3﹣2,c=
,d=
,則它們的大小關(guān)系是( )
A. a<b<c<d B. b<a<d<c C. a<d<c<b D. c<a<d<b
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖的七邊形ABCDEFG中,AB、ED的延長線相交于O點.若圖中∠1、∠2、∠3、∠4的外角的角度和為220°,則∠BOD的度數(shù)是( 。
![]()
A. 400 B. 450 C. 500 D. 600
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).![]()
(1)請直接寫出與點B關(guān)于坐標原點O的對稱點B1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉(zhuǎn)90°.畫出對應的△A′B′C′圖形,直接寫出點A的對應點A′的坐標;
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°。
![]()
①當點D在AC上時,如圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?寫出你猜想的結(jié)論,并說明理由;
②將圖1中的△ADE繞點A順時針旋轉(zhuǎn)α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請說明理由。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=(x﹣1)2+n與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C(0,﹣3),點D與點C關(guān)于拋物線的對稱軸對稱.![]()
(1)求拋物線的解析式及點D的坐標;
(2)點P是拋物線對稱軸上的一動點,當△PAC的周長最小時,求出點P的坐標;
(3)點Q在x軸上,且∠ADQ=∠DAC,請直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=6,∠A=135°,點P是菱形內(nèi)部一點,且滿足S△PCD=
,則PC+PD的最小值是_____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形ABCD對折,得折痕PQ,展開后再沿MN翻折,使點C恰好落在折痕PQ上的點C′處,點D落在D′處,其中M是BC的中點且MN與折痕PQ交于F.連接AC′,BC′,則圖中共有等腰三角形的個數(shù)是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知 AB 是⊙O 的直徑,點 C、D 在⊙O 上,過 D 點作 PF∥AC交⊙O 于 F,交 AB 于點 E,∠BPF=∠ADC
(1)求證:AEEB=DEEF.
(2)求證:BP 是⊙O 的切線:
(3)當?shù)陌霃綖?/span>
,AC=2,BE=1 時,求 BP 的長,
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com