【題目】如圖,點(diǎn)C在線段AB上,點(diǎn)M、N分別是AC、BC的中點(diǎn).
![]()
(1)若AC=9cm,CB=6cm,求線段MN的長;
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=acm,其它條件不變,你能猜想MN的長度嗎?并說明理由.
(3)若C在線段AB的延長線上,且滿足AC-BC=bcm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長度嗎?請畫出圖形,并直接寫出你的結(jié)論.
【答案】(1)MN=7.5cm;(2)MN=
acm;(3)
bcm.
【解析】
(1)根據(jù)“點(diǎn)M、N分別是AC、BC的中點(diǎn)”,先求出MC、CN的長度,再利用MN=CM+CN即可求出MN的長度即可,
(2)當(dāng)C為線段AB上一點(diǎn),且M,N分別是AC,BC的中點(diǎn),則存在MN=
,
(3)點(diǎn)在AB的延長線上時(shí),根據(jù)M、N分別為AC、BC的中點(diǎn),即可求出MN的長度.
(1)∵AC=9cm,點(diǎn)M是AC的中點(diǎn),
∴CM=0.5AC=4.5cm,
∵BC=6cm,點(diǎn)N是BC的中點(diǎn),
∴CN=0.5BC=3cm,
∴MN=CM+CN=7.5cm,
∴線段MN的長度為7.5cm,
(2)MN=
a,
當(dāng)C為線段AB上一點(diǎn),且M,N分別是AC,BC的中點(diǎn),則存在MN=
a,
(3)當(dāng)點(diǎn)C在線段AB的延長線時(shí),如圖:![]()
則AC>BC,
∵M是AC的中點(diǎn),
∴CM=
AC,
∵點(diǎn)N是BC的中點(diǎn),
∴CN=
BC,
∴MN=CM-CN=
(AC-BC)=
b.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,
,
平分
,
平分
.求
的度數(shù);
請補(bǔ)全下列解法中的空缺部分.
![]()
解:過點(diǎn)
作
交
于點(diǎn)![]()
∵
(___________)
∴_________
(___________)
∵
(___________)
∴
___________(___________)
且
______________(平行于同一直線的兩直線也互相平行)
∴
____________(兩直線平行,內(nèi)錯(cuò)角相等)
∵
平分
,
平分
.
∴
_____________,
_________________.(___________)
∴
(___________)
∴![]()
總結(jié):兩直線平行時(shí),同旁內(nèi)角的角平分線_______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,過點(diǎn)B做射線BB1∥AC,動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C出發(fā)沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng),過點(diǎn)D作DH⊥AB于H,過點(diǎn)E作EF⊥AC交射線BB1于F,連接DF,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(t>0).![]()
(1)當(dāng)t為時(shí),AD=AB,此時(shí)DE的長度為;
(2)當(dāng)△DEF與△ACB全等時(shí),求t的值;
(3)以DH所在直線為對稱軸,線段AC經(jīng)軸對稱變換后的圖形為A′C′.
①當(dāng)t>
時(shí),設(shè)△ADA′的面積為S,直接寫出S關(guān)于t的函數(shù)關(guān)系式;
③當(dāng)線段A′C′與射線BB1有公共點(diǎn)時(shí),求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式:①x2+x3=x5 ;②a3a2=a6 ;③
;④
;⑤(π﹣1)0=1,其中正確的是( )
A.④⑤
B.③④
C.②③
D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的4月23日是“世界讀書日”.某中學(xué)為了了解八年級學(xué)生的讀書情況,隨機(jī)調(diào)查了50名學(xué)生的冊數(shù),統(tǒng)計(jì)數(shù)據(jù)如表所示:
冊數(shù) | 0 | 1 | 2 | 3 | 4 |
人數(shù) | 3 | 13 | 16 | 17 | 1 |
則這50名學(xué)生讀數(shù)冊數(shù)的眾數(shù)、中位數(shù)是( )
A.3,3
B.3,2
C.2,3
D.2,2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=ax+b與二次函數(shù)y=ax2﹣b的圖象可能是( )
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.
(1)求∠DAB的度數(shù).
(2)求四邊形ABCD的面積.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com