欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

【題目】如圖,在ABC中,AB=5,AC=13,BC邊上的中線AD=6,則ABD的面積是______

【答案】15

【解析】

延長AD到點(diǎn)E,使DE=AD=6,連接CE,可證明ABD≌△CED,所以CE=AB,再利用勾股定理的逆定理證明CDE是直角三角形,即ABD為直角三角形,進(jìn)而可求出ABD的面積.

解:延長AD到點(diǎn)E,使DE=AD=6,連接CE,

ADBC邊上的中線,

BD=CD,

ABDCED中,

,

∴△ABD≌△CED(SAS),

CE=AB=5,BAD=E,

AE=2AD=12,CE=5,AC=13,

CE2+AE2=AC2,

∴∠E=90°,

∴∠BAD=90°,

ABD為直角三角形,

∴△ABD的面積=ADAB=15.

故答案為:15.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OEAB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得的長,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM,

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級:當(dāng)空氣污染指數(shù)達(dá)0—50時為1級,質(zhì)量為優(yōu);51—100時為2級,質(zhì)量為良;101—200時為3級,輕度污染;201—300時為4級,中度污染;300以上時為5級,重度污染.某城市隨機(jī)抽取了2015年某些天的空氣質(zhì)量檢測結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:

(1) 本次調(diào)查共抽取了 天的空氣質(zhì)量檢測結(jié)果進(jìn)行統(tǒng)計;

(2) 補(bǔ)全條形統(tǒng)計圖;

(3) 扇形統(tǒng)計圖中3級空氣質(zhì)量所對應(yīng)的圓心角為 °;

(4) 如果空氣污染達(dá)到中度污染或者以上,將不適宜進(jìn)行戶外活動,根據(jù)目前的統(tǒng)計,請你估計2015年該城市有多少天不適宜開展戶外活動.(2015年共365)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面上,RtABC與直徑為CE的半圓O如圖1擺放,∠B=90°,AC=2CE=m,BC=n,半圓OBC邊于點(diǎn)D,將半圓O繞點(diǎn)C按逆時針方向旋轉(zhuǎn),點(diǎn)D隨半圓O旋轉(zhuǎn)且ECD始終等于ACB,旋轉(zhuǎn)角記為α(0°≤α≤180°).

(1)當(dāng)α=0°連接DE,CDE=   °,CD=   

(2)試判斷旋轉(zhuǎn)過程中的大小有無變化?請僅就圖2的情形給出證明;

(3)m=10,n=8,當(dāng)旋轉(zhuǎn)的角度α恰為ACB的大小時,求線段BD的長

(4)m=6,n=當(dāng)半圓O旋轉(zhuǎn)至與ABC的邊相切時,直接寫出線段BD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A(3,0)為圓心,5為半徑的圓與x軸相交于B. C,y軸的負(fù)半軸相交于D,拋物線y=x+bx+c經(jīng)過B. C. D三點(diǎn)。

(1)求此拋物線的解析式;

(2)若動直線MN(MNx)從點(diǎn)D開始,以每秒1個長度單位的速度沿y軸的正方向移動,且與線段CD、y軸分別交于M、N兩點(diǎn),動點(diǎn)P同時從點(diǎn)C出發(fā),在線段OC上以每秒2個長度單位的速度向原點(diǎn)O運(yùn)動,連接PM,設(shè)運(yùn)動時間為t秒,若以P、C. M為頂點(diǎn)的三角形與△OCD相似,求實(shí)數(shù)t的值;

②當(dāng)t為何值時, 的值最大,并求出最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(背景知識)

數(shù)軸是初中數(shù)學(xué)的一個重要工具,利用數(shù)軸可以將數(shù)與形完美結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)有許多重要的規(guī)律:

例如,若數(shù)軸上點(diǎn)、點(diǎn)表示的數(shù)分別為、,則、兩點(diǎn)之間的距離,線段的中點(diǎn)表示的數(shù)為

(問題情境)

在數(shù)軸上,點(diǎn)表示的數(shù)為-20,點(diǎn)表示的數(shù)為10,動點(diǎn)從點(diǎn)出發(fā)沿數(shù)軸正方向運(yùn)動,同時,動點(diǎn)也從點(diǎn)出發(fā)沿數(shù)軸負(fù)方向運(yùn)動,已知運(yùn)動到4秒鐘時,、兩點(diǎn)相遇,且動點(diǎn)、運(yùn)動的速度之比是(速度單位:單位長度/秒).

備用圖

(綜合運(yùn)用)

1)點(diǎn)的運(yùn)動速度為______單位長度/秒,點(diǎn)的運(yùn)動速度為______單位長度/秒;

2)當(dāng)時,求運(yùn)動時間;

3)若點(diǎn)、在相遇后繼續(xù)以原來的速度在數(shù)軸上運(yùn)動,但運(yùn)動的方向不限,我們發(fā)現(xiàn):隨著動點(diǎn)、的運(yùn)動,線段的中點(diǎn)也隨著運(yùn)動.問點(diǎn)能否與原點(diǎn)重合?若能,求出從、相遇起經(jīng)過的運(yùn)動時間,并直接寫出點(diǎn)的運(yùn)動方向和運(yùn)動速度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形,點(diǎn)為對角線上一個動點(diǎn),邊上一點(diǎn),且

(1)求證:;

(2)若四邊形的面積為25,試探求滿足的數(shù)量關(guān)系式;

(3)若為射線上的點(diǎn),設(shè),四邊形的周長為,且,求的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上兩點(diǎn)AB對應(yīng)的數(shù)分別為-30、0.若點(diǎn)AB同時出發(fā),點(diǎn)A以每秒2個單位長度的速度向右運(yùn)動;點(diǎn)B以每秒3個單位長度的速度向左運(yùn)動,到達(dá)點(diǎn)A出發(fā)時的位置后立即以每秒4個單位長度的速度向右運(yùn)動.設(shè)運(yùn)動的時間為t秒.

1)求點(diǎn)A和點(diǎn)B第一次相遇時t的值;

2)當(dāng)點(diǎn)A和點(diǎn)B之間的距離為6個單位長度時,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,反比例函數(shù)x>0)的圖象經(jīng)過點(diǎn)A,1),射線AB與反比例函數(shù)圖象交于另一點(diǎn)B(1,a),射線ACy軸交于點(diǎn)C,∠BAC=75°,ADy,垂足為D

(1)k的值;

(2)tan∠DAC的值及直線AC的解析式

(3)如圖2,M是線段AC上方反比例函數(shù)圖象上一動點(diǎn),M作直線lxAC相交于點(diǎn)N,連接CM求△CMN面積的最大值

查看答案和解析>>

同步練習(xí)冊答案