如圖,拋物線y=
x2﹣
x﹣9與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC.
(1)求AB和OC的長;
(2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(點(diǎn)E與點(diǎn)A、B不重合),過點(diǎn)E作直線l平行BC,交AC于點(diǎn)D.設(shè)AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留π).
![]()
考點(diǎn):二次函數(shù)綜合題。
解答:解:(1)已知:拋物線y=
x2﹣
x﹣9;
當(dāng)x=0時(shí),y=﹣9,則:C(0,﹣9);
當(dāng)y=0時(shí),
x2﹣
x﹣9=0,得:x1=﹣3,x2=6,則:A(﹣3,0)、B(6,0);
∴AB=9,OC=9.
(2)∵ED∥BC,
∴△AED∽△ABC,
∴
=(
)2,即:
=(
)2,得:s=
m2(0<m<9).
(3)S△AEC=
AE•OC=
m,S△AED=s=
m2;
則:S△EDC=S△AEC﹣S△AED=﹣
m2+
m=﹣
(m﹣
)2+
;
∴△CDE的最大面積為
,此時(shí),AE=m=
,BE=AB﹣AE=
.
過E作EF⊥BC于F,則Rt△BEF∽Rt△BCO,得:
=
,即:
=![]()
∴EF=
;
∴以E點(diǎn)為圓心,與BC相切的圓的面積 S⊙E=π•EF2=
.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com