如圖, 梯形ABCD中,AD//BC,AB=CD=AD=1,∠B=60°,直線
為梯形ABCD的對(duì)稱軸,P為MN上一點(diǎn),那么PC+PD的最小值 .
![]()
![]()
【解析】本題主要考查了等腰梯形的性質(zhì),軸對(duì)稱-最短路線問題. 因?yàn)橹本MN為梯形ABCD的對(duì)稱軸,所以當(dāng)A、P、C三點(diǎn)位于一條直線時(shí),PC+PD有最小值
解:連接AC交直線MN于P點(diǎn),P點(diǎn)即為所求.
∵直線MN為梯形ABCD的對(duì)稱軸,
∴AP=DP,
∴當(dāng)A、P、C三點(diǎn)位于一條直線時(shí),PC+PD=AC,為最小值,
∵AD=DC=AB,AD∥BC,
∴∠DCB=∠B=60°,
∵AD∥BC,
∴∠ACB=∠DAC,
∵AD=CD,
∴∠DAC=∠DCA,
∴∠DAC=∠DCA=∠ACB
∵∠ACB+∠DCA=60°,
∴∠DAC=∠DCA=∠ACB=30°,
∴∠BAC=90°,
∵AB=1,∠B=60°
∴AC=tan60°×AB=
×1=
.
∴PC+PD的最小值為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| AB |
| AD |
| AB |
| AD |
| CO |
| CO |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com