【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A,C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線y=﹣
x+3交AB,BC于點(diǎn)M,N,反比例函數(shù)y=
的圖象經(jīng)過點(diǎn)M,N.![]()
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
【答案】
(1)
解:∵B(4,2),四邊形OABC是矩形,
∴OA=BC=2,
將y=2代入y=﹣
x+3得:x=2,
∴M(2,2),
把M的坐標(biāo)代入y=
得:k=4,
∴反比例函數(shù)的解析式是y=
;
(2)
解:把x=4代入y=
得:y=1,即CN=1,
∵S四邊形BMON=S矩形OABC﹣S△AOM﹣S△CON
=4×2﹣
×2×2﹣
×4×1=4,
由題意得:
|OP|×AO=4,
∵AO=2,
∴|OP|=4,
∴點(diǎn)P的坐標(biāo)是(4,0)或(﹣4,0).
【解析】(1)求出OA=BC=2,將y=2代入y=﹣
x+3求出x=2,得出M的坐標(biāo),把M的坐標(biāo)代入反比例函數(shù)的解析式即可求出答案;
(2)求出四邊形BMON的面積,求出OP的值,即可求出P的坐標(biāo)
此題考查了反比例函數(shù)的應(yīng)用,根據(jù)條件求出點(diǎn)坐標(biāo)進(jìn)而求出反比例函數(shù)解析式。
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=60°,∠A=40°.![]()
(1)用尺規(guī)作圖作AB的垂直平分線,交AC于點(diǎn)D,交AB于點(diǎn)E(保留作圖痕跡,不要求寫作法和證明);
(2)求證:BD平分∠CBA.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.以AB上某一點(diǎn)O為圓心作⊙O,使⊙O經(jīng)過點(diǎn)A和點(diǎn)D.![]()
(1)判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若AC=3,∠B=30°.
①求⊙O的半徑;
②設(shè)⊙O與AB邊的另一個(gè)交點(diǎn)為E,求線段BD、BE與劣弧DE所圍成的陰影部分的圖形面積.(結(jié)果保留根號和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)A在反比例函數(shù)y=
(k>0,x>0)的圖象上,點(diǎn)D的坐標(biāo)為(4,3).![]()
(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點(diǎn)D落在函數(shù)y=
(k>0,x>0)的圖象上時(shí),求菱形ABCD沿x軸正方向平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣
x2+bx+c,經(jīng)過A(0,﹣4),B(x1 , 0),C(x2 , 0)三點(diǎn),且|x2﹣x1|=5.![]()
(1)求b,c的值;
(2)在拋物線上求一點(diǎn)D,使得四邊形BDCE是以BC為對角線的菱形;
(3)在拋物線上是否存在一點(diǎn)P,使得四邊形BPOH是以O(shè)B為對角線的菱形?若存在,求出點(diǎn)P的坐標(biāo),并判斷這個(gè)菱形是否為正方形?若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A是雙曲線
在第一象限的分支上的一個(gè)動(dòng)點(diǎn),連接AO并延長交另一分支于點(diǎn)B,過點(diǎn)A作y軸的垂線,過點(diǎn)B作x軸的垂線,兩垂線交于點(diǎn)C,隨著點(diǎn)A的運(yùn)動(dòng),點(diǎn)C的位置也隨之變化.設(shè)點(diǎn)C的坐標(biāo)為(m,n),則m,n滿足的關(guān)系式為( )![]()
A.n=﹣2m
B.n=![]()
C.n=﹣4m
D.n=![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com