如圖,在Rt△ABC中,AB=AC,P是邊AB(含端點(diǎn))上的動(dòng)點(diǎn).過P作BC的垂線PR,R為垂足,∠PRB的平分線與AB相交于點(diǎn)S,在線段RS上存在一點(diǎn)T,若以線段PT為一邊作正方形PTEF,其頂點(diǎn)E,F恰好分別在邊BC,AC上.
(1)△ABC與△SBR是否相似,說明理由;
(2)請(qǐng)你探索線段TS與PA的長度之間的關(guān)系;
(3)設(shè)邊AB=1,當(dāng)P在邊AB(含端點(diǎn))上運(yùn)動(dòng)時(shí),請(qǐng)你探索正方形PTEF的面積y的最小值和最大值.
|
解:(1)∵RS是直角∠PRB的平分線,∴∠PRS=∠BRS=45°. 在△ABC與△SBR中,∠C=∠BRS=45°,∠B是公共角, ∴△ABC∽△SBR.(1分) (2)線段TS的長度與PA相等.(2分) ∵四邊形PTEF是正方形, ∴PF=PT,∠SPT+∠FPA=180°-∠TPF=90°, 在Rt△PFA中,∠PFA+∠FPA=90°, ∴∠PFA=∠TPS, ∴Rt△PAF≌Rt△TSP,∴PA=TS.(3分) 當(dāng)點(diǎn)P運(yùn)動(dòng)到使得T與R重合時(shí), 這時(shí)△PFA與△TSP都是等腰直角三角形且底邊相等,即有PA=TS.
(若下面解題中沒有求出x的取值范圍是0≤x≤ 由以上可知,線段ST的長度與PA相等. (3)由題意,RS是等腰Rt△PRB的底邊PB上的高, ∴PS=BS,∴BS+PS+PA=1,∴PS= 設(shè)PA的長為x,易知AF=PS, 則y=PF 即y= 根據(jù)二次函數(shù)的性質(zhì),當(dāng)x= 如圖2,當(dāng)點(diǎn)P運(yùn)動(dòng)使得T與R重合時(shí),PA=TS為最大.
易證等腰Rt△PAF≌等腰Rt△PSR≌等腰Rt△BSR, ∴PA= 如圖3,當(dāng)P與A重合時(shí),得x=0.
∴x的取值范圍是0≤x≤ (此處為獨(dú)立得分點(diǎn),只要求出x≤ ∴①當(dāng)x的值由0增大到 ∴②當(dāng)x的值由 (說明:①②任做對(duì)一處評(píng)1分,兩處全對(duì)也只評(píng)一分) ∵ 正方形PTEF面積y的最小值是 |
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 5 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com