【題目】已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學(xué)家海倫解決了這個(gè)問題,在他的著作《度量論》一書中給出了計(jì)算公式﹣﹣海倫公式S=
(其中a,b,c是三角形的三邊長,p=
,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計(jì)算:
∵a=3,b=4,c=5
∴p=
=6
∴S=
=
=6
事實(shí)上,對(duì)于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時(shí)期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
![]()
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(x-1)2+(x-3)2 ,當(dāng)x=______時(shí),函數(shù)達(dá)到最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的頂點(diǎn)坐標(biāo)為A(﹣2,3)B(﹣3,1)C(﹣1,2),以坐標(biāo)原點(diǎn)O為旋轉(zhuǎn)中心,順時(shí)針旋轉(zhuǎn)90°,得到△A′B′C′,點(diǎn)B′、C′分別是點(diǎn)B、C的對(duì)應(yīng)點(diǎn).
![]()
(1)求過點(diǎn)B′的反比例函數(shù)解析式;
(2)求線段CC′的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用直接開方法解方程(x﹣1)2=4,得到方程的根為( 。
A. x=3 B. x1=3,x2=﹣1 C. x1=1,x2=﹣3 D. x1=x2=3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角三角形ABC中,當(dāng)∠A增大時(shí),它的外心逐漸向_________邊移動(dòng);當(dāng)∠A增大到90°時(shí),外心的位置是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)
是反比例函數(shù)
圖像上的任意一點(diǎn),過點(diǎn)
作
∥
軸,交另一個(gè)反比例函數(shù)
的圖像于點(diǎn)
.
(1)若
,則
______ ;
(2)當(dāng)
時(shí), 若點(diǎn)
的橫坐標(biāo)是1,求
的度數(shù);
(3)如圖,若不論點(diǎn)
在何處,反比例函數(shù)
圖像上總存在一點(diǎn)
,使得四邊形
為平行四邊形,求
的值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平移線段AB,使點(diǎn)B移動(dòng)到點(diǎn)C的位置,若AB=10cm,BC=8cm,則點(diǎn)A移動(dòng)的距離是____cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC的三個(gè)頂點(diǎn)的縱坐標(biāo)都乘以-1,橫坐標(biāo)不變,則所得圖形與原圖形的關(guān)系是( )
A. 關(guān)于x軸對(duì)稱 B. 關(guān)于y軸對(duì)稱
C. 關(guān)于原點(diǎn)對(duì)稱 D. 將圖形向x軸的負(fù)方向移動(dòng)了1個(gè)單位
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com