| A. | ②③ | B. | ①②③ | C. | ①②④ | D. | ①②③④ |
分析 通過證明△AFP≌△BEP就可以得出AF=BE,EP=PF,得出AE=CF,得出△EPF是等腰直角三角形,由S四邊形AEPF=S△APE+S△APF.就可以得出S四邊形AEPF=S△CPF+S△APF,就可以得出結(jié)論,由AF=BE,AE=CF得出EF2=BE2+CF2.
解答 解:∵AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC的中點(diǎn),
∴∠B=∠PAF=45°,BP=AP,
∵∠APE+∠BPE=90°,∠APE+∠APF=90°,
∴∠BPE=∠APF.
在△BPE和△APF中,
$\left\{\begin{array}{l}{∠B=∠PAF}\\{BP=AP}\\{∠BPE=∠APF}\end{array}\right.$,
∴△AFP≌△BEP(ASA),
∴BE=AF,PE=PF,
故①AF=BE;②△EPF是等腰直角三角形正確;
∵EPF=90°,在Rt△EPF中,由勾股定理,得
EF2=PE2+PF2,
∴EF2=BE2+CF2.故④正確;
∵S四邊形AEPF=S△APE+S△APF.
∴S四邊形AEPF=S△CPF+S△APF=S△FAE=$\frac{1}{2}$S△ABC.故③正確.
故選D.
點(diǎn)評(píng) 本題考查了等腰直角三角形的性質(zhì)的運(yùn)用,全等三角形的判定及性質(zhì)的運(yùn)用,中位線的性質(zhì)的運(yùn)用,等腰直角三角形的判定定理的運(yùn)用,三角形面積公式的運(yùn)用,解答時(shí)靈活運(yùn)用等腰直角三角形的性質(zhì)求解是關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | (1)(2) | B. | (1)(3)(4) | C. | (3)(4)(5) | D. | (2)(6) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com