欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

在△ABC中和△DBE中,∠ACB=∠DBC=90°,E是BC的中點(diǎn),EF⊥AB于F,且AB=DE.
(1)觀察并猜想,BD與BC有何數(shù)量關(guān)系?并證明你猜想的結(jié)論.
(2)若BD=8cm,試求AC的長.
分析:(1)根據(jù)三角形內(nèi)角和定理求出∠A=∠DEB,根據(jù)AAS證△ACB≌△EBD,根據(jù)全等三角形性質(zhì)推出即可;
(2)根據(jù)全等推出AC=BE,BC=BD=8cm,根據(jù)線段中點(diǎn)求出BE,即可求出AC.
解答:
(1)BD=BC,
證明:∵EF⊥AB,
∴∠EFB=90°,
∵∠ACB=90°,
∴∠A+∠ABC=90°,∠FEB+∠ABC=90°,
∴∠A=∠FEB,
在△ACB和△EBD中
∠A=∠DEB
∠ACB=∠DBC
AB=DE

∴△ACB≌△EBD(AAS),
∴BD=BC;

(2)解:∵由(1)知:△ACB≌△EBD,
∴BC=BD=8cm,BE=AC,
∵E為BC中點(diǎn),
∴BE=
1
2
BC=4cm,即AC=4cm.
點(diǎn)評:本題考查了三角形的內(nèi)角和定理,線段中點(diǎn)定義,全等三角形的性質(zhì)和判定,主要考查學(xué)生綜合運(yùn)用性質(zhì)進(jìn)行推理和計算的能力,注意:全等三角形的對應(yīng)邊相等,全等三角形的判定定理有SAS,ASA,AAS,SSS.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓和半圓,其中分別為兩個半圓的圓心. F是邊BC的中點(diǎn),點(diǎn)D和點(diǎn)E分別為兩個半圓圓弧的中點(diǎn).

(1)連結(jié),證明:;

(2)如圖二,過點(diǎn)A分別作半圓和半圓的切線,交BD的延長線和CE的延長線于點(diǎn)P和點(diǎn)Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;

(3)如圖三,過點(diǎn)A作半圓的切線,交CE的延長線于點(diǎn)Q,過點(diǎn)Q作直線FA的垂線,交BD的延長線于點(diǎn)P,連結(jié)PA. 證明:PA是半圓的切線

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,分別以ABAC為直徑在△ABC外作半圓和半圓,其中分別為兩個半圓的圓心. F是邊BC的中點(diǎn),點(diǎn)D和點(diǎn)E分別為兩個半圓圓弧的中點(diǎn).

(1)連結(jié),

證明:;

(2)如圖,過點(diǎn)A分別作半圓和半圓的切線,交BD的延長線和CE的延長線于點(diǎn)P和點(diǎn)Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;

(3)如圖三,過點(diǎn)A作半圓的切線,交CE的延長線于點(diǎn)Q,過點(diǎn)Q作直線FA的垂線,交BD的延長線于點(diǎn)P,連結(jié)PA. 證明:PA是半圓的切線.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓和半圓,其中分別為兩個半圓的圓心. F是邊BC的中點(diǎn),點(diǎn)D和點(diǎn)E分別為兩個半圓圓弧的中點(diǎn).
【小題1】連結(jié),證明:

【小題2】如圖二,過點(diǎn)A分別作半圓和半圓的切線,交BD的延長線和CE的延長線于點(diǎn)P和點(diǎn)Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;

【小題3】如圖三,過點(diǎn)A作半圓的切線,交CE的延長線于點(diǎn)Q,過點(diǎn)Q作直線FA的垂線,交BD的延長線于點(diǎn)P,連結(jié)PA. 證明:PA是半圓的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓和半圓,其中分別為兩個半圓的圓心. F是邊BC的中點(diǎn),點(diǎn)D和點(diǎn)E分別為兩個半圓圓弧的中點(diǎn).

(1)連結(jié),
證明:;
(2)如圖,過點(diǎn)A分別作半圓和半圓的切線,交BD的延長線和CE的延長線于點(diǎn)P和點(diǎn)Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;

(3)如圖三,過點(diǎn)A作半圓的切線,交CE的延長線于點(diǎn)Q,過點(diǎn)Q作直線FA的垂線,交BD的延長線于點(diǎn)P,連結(jié)PA. 證明:PA是半圓的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓和半圓,其中分別為兩個半圓的圓心. F是邊BC的中點(diǎn),點(diǎn)D和點(diǎn)E分別為兩個半圓圓弧的中點(diǎn).

(1)連結(jié),證明:;
(2)如圖二,過點(diǎn)A分別作半圓和半圓的切線,交BD的延長線和CE的延長線于點(diǎn)P和點(diǎn)Q,連結(jié)PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;

(3)如圖三,過點(diǎn)A作半圓的切線,交CE的延長線于點(diǎn)Q,過點(diǎn)Q作直線FA的垂線,交BD的延長線于點(diǎn)P,連結(jié)PA. 證明:PA是半圓的切線

查看答案和解析>>

同步練習(xí)冊答案