【題目】已知:如圖,在正方形ABCD中,E是CD邊上的一點,F(xiàn)為BC延長線上一點,且CE=CF.
(1)求證:△BEC≌△DFC;
(2)如果BC+DF=9,CF=3,求正方形ABCD的面積.
【答案】(1)證明見解析
(2)16
【解析】
試題(1)正方形的四個邊相等,四個角都是直角,因此可得到BC=DC,∠ECD=∠FCD,由SAS可證明三角形全等.
(2)設(shè)BC=x,則CD=x,DF=9﹣x,CF=4,可用勾股定理求出x,因此可求出正方形ABCD的面積.
試題解析:(1)∵四邊形ABCD是正方形
∴BC=CD,∠BCE=90°
∴∠DCF=180°-∠BCE=90°=∠BCE
在△BCE和△DCF中,
,
∴△BEC≌△DFC(SAS);
(2)設(shè)BC=x,則CD=x,DF=9﹣x,
在Rt△DCF中,CF=3,
∴CF2+CD2=DF2,
32+x2=(9﹣x)2,
解得x=4,正方形的面積為:4×4=16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛.現(xiàn)在需要調(diào)往
縣10輛,需要調(diào)往
縣8輛,已知從甲倉庫調(diào)運一輛農(nóng)用車到
縣和
縣的運費分別為40元和80元;從乙倉庫調(diào)運一輛農(nóng)用車到
縣和
縣的運費分別為30元和50元.
(1)設(shè)乙倉庫調(diào)往
縣農(nóng)用車
輛,求總運費
關(guān)于
的函數(shù)關(guān)系式;
(2)若要求總運費不超過900元,問共有幾種調(diào)運方案?試列舉出來.
(3)求出總運費最低的調(diào)運方案,最低運費是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l所對應(yīng)的函數(shù)表達(dá)式為y=x.過點A1(0,1)作y軸的垂線交直線l于點B1 , 過點B1作直線l的垂線交y軸于點A2;過點A2作y軸的垂線交直線l于點B2 , 則點B2的坐標(biāo)為( )
![]()
A. (1,1) B. (
,
) C. (2,2) D. ( 2
,2
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB=BC=6,∠B=60°,∠D=90°,連結(jié)AC.動點P從點B出發(fā),沿BC以每秒1個單位的速度向終點C運動(點P不與點B、C重合).過點P作PQ⊥BC交AB或AC于點Q,以PQ為斜邊作Rt△PQR,使PR∥AB.設(shè)點P的運動時間為t秒.
![]()
(1)當(dāng)點Q在線段AB上時,求線段PQ的長.(用含t的代數(shù)式表示)
(2)當(dāng)點R落在線段AC上時,求t的值.
(3)設(shè)△PQR與△ABC重疊部分圖形的面積為S平方單位,求S與t之間的函數(shù)關(guān)系式.
(4)當(dāng)點R到C、D兩點的距離相等時,直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)某中學(xué)九年級學(xué)生在學(xué)習(xí)“直角三角形的邊角關(guān)系”時,組織開展測量物體高度的實踐活動.要測量學(xué)校一幢教學(xué)樓AB的高度如圖所示,他們先在點C測得教學(xué)樓的頂部A的仰角為36.2°,然后向教學(xué)樓前進(jìn)10米到達(dá)點D,又測得點A的仰角為45°.請你根據(jù)這些數(shù)據(jù),求出這幢教學(xué)樓AB的高度.(結(jié)果精確到1米)
【參考數(shù)據(jù):sin36.2°=0.59,cos36.2°=0.81,tan36.2°=0.73】
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在平面直角坐標(biāo)系中,直線
與
軸、
軸分別交于A、B兩點,動點P從點A開始在線段AO上以每秒1個單位長度的速度向點O運動;同時,動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A運動,當(dāng)其中一點到達(dá)終點時,另一點也隨之停止運動.設(shè)點P運動的時間為t(秒).
(1)直接寫出A、B兩點的坐標(biāo).
(2)當(dāng)△APQ與△AOB相似時,求t的值.
(3)設(shè)△APQ的面積為S(平方單位),求S與t之間的函數(shù)關(guān)系式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級為了解學(xué)生課堂發(fā)言情況,隨機抽取該年級部分學(xué)生,對他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計,其結(jié)果如下表,并繪制了如圖所示的兩幅不完整的統(tǒng)計圖,已知B、E兩組發(fā)言人數(shù)的比為5:2,請結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問題:
(1)樣本容量是______________,并補全直方圖;
(2)該年級共有學(xué)生800人,請估計該年級在這天里發(fā)言次數(shù)不少于12次的人數(shù);
(3)已知A組發(fā)言的學(xué)生中恰有1位女生,E組發(fā)言的學(xué)生中有2位男生,現(xiàn)從A組與E組中分別抽一位學(xué)生寫報告,請用列表法或畫樹狀圖的方法,求所抽的兩位學(xué)生恰好都是男生的概率.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在講完乘法公式
的多種運用后,要求同學(xué)們運用所學(xué)知識解答:求代數(shù)式
的最小值?同學(xué)們經(jīng)過交流、討論,最后總結(jié)出如下解答方法:
解:![]()
∵
,
當(dāng)
時,
的值最小,最小值是0,
∴![]()
當(dāng)
時,
的值最小,最小值是1,
∴
的最小值是1.
請你根據(jù)上述方法,解答下列各題
(1)當(dāng)x=______時,代數(shù)式
的最小值是______;
(2)若
,當(dāng)x=______時,y有最______值(填“大”或“小”),這個值是______;
(3)若
,求
的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在RtABC中,∠C=90°,AC=BC=
(如圖),若將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△AB′C′的位置,聯(lián)結(jié)C′B,則C′B的長為_____.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com