【題目】如圖,在
中,
,以
為直徑的
與
邊交于點(diǎn)
,過點(diǎn)
作
交
于點(diǎn)
,連接
.
求證:
是
的切線;
若
的半徑為
,
,求
的長(zhǎng).
![]()
【答案】(1)見解析;(2)
.
【解析】
(1)連接OD,根據(jù)等邊對(duì)等角得到∠A=∠ADO,再結(jié)合平行線的性質(zhì)可得到∠DOE=∠COE,從而得到△ODE≌△OCE,根據(jù)全等三角形的性質(zhì)得到∠ODE=∠ACB=90°,由此得到結(jié)論;
(2)連接CD,根據(jù)平行線等分線段定理得到BE=CE,根據(jù)勾股定理得到AB=10,由三角形的面積公式得到CD的長(zhǎng).在Rt△CBD中,由勾股定理即可得到結(jié)論.
(1)連接OD.
∵OA=OD,∴∠A=∠ADO.
∵OE∥AB,∴∠A=∠EOC,∠ADO=∠DOE,∴∠DOE=∠COE.
在△ODE與△OCE中,∵OD=OC,∠DOE=∠COE,OE=OE,∴△ODE≌△OCE,∴∠ODE=∠ACB=90°,∴DE是⊙O的切線;
(2)連接CD.
∵OE∥AB,AO=OC,∴BE=EC.
∵⊙O的半徑為3,EC=4,∴BC=8,AC=6.
∵∠ACB=90°,∴AB=10.
∵AC是直徑,∴∠ADC=90°.
∵S△ABC=
ACBC=
ABCD,∴6×8=10×CD,解得:CD=
,∴BD=
=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:把一張給定大小的矩形卡片ABCD放在寬度為10mm的橫格紙中,恰好四個(gè)頂點(diǎn)都在橫格線上,已知α=25°,求長(zhǎng)方形卡片的周長(zhǎng)。(精確到1mm,參考數(shù)據(jù): sin25°≈0,cos25°≈0.9,tan25°≈0.5).![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中考英語聽力測(cè)試期間T需要杜絕考點(diǎn)周圍的噪音.如圖,點(diǎn)A是某市一中考考點(diǎn),在位于考點(diǎn)南偏西15°方向距離500米的C點(diǎn)處有一消防隊(duì).在聽力考試期間,消防隊(duì)突然接到報(bào)警電話,消防車需沿北偏東75°方向的公路CF前往救援.已知消防車的警報(bào)聲傳播半徑為400米,若消防車的警報(bào)聲對(duì)聽力測(cè)試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?
說明理由.(
≈1.732)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方體的長(zhǎng)為15,寬為10,高為20,點(diǎn)B離點(diǎn)C的距離為5,一只螞蟻如果要沿著長(zhǎng)方體的表面從點(diǎn)A爬到點(diǎn)B,需要爬行的最短距離是__________
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學(xué)習(xí)用品—圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”.
(1)觀察“規(guī)形圖”,試探究
與
、
、
之間的關(guān)系,并說明理由;
(2)請(qǐng)你直接利用以上結(jié)論,解決以下三個(gè)問題:
①如圖2,把一塊三角尺
放置在
上,使三角尺的兩條直角邊
、
恰好經(jīng)過點(diǎn)
、
,
,則
________________;
②如圖3,
平分
,
平分
,若
,
,求
的度數(shù);
③如圖4,
,
的
等分線相交于點(diǎn)
,
,
,![]()
,若
,
,求
的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
是
的直徑,
是
的弦,延長(zhǎng)
到點(diǎn)
,使
,連結(jié)
,過點(diǎn)
作
,垂足為
,交
的延長(zhǎng)線于點(diǎn)
.
求證:
為
的切線;
猜想線段
、
、
之間的數(shù)量關(guān)系,并證明你的猜想;
若
,
,求線段
的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】勾股定理揭示了直角三角形三邊之間的關(guān)系,其中蘊(yùn)含著豐富的科學(xué)知識(shí)和人文價(jià)值.如圖所示,是一棵由正方形和含
角的直角三角形按一定規(guī)律長(zhǎng)成的勾股樹,樹的主干自下而上第一個(gè)正方形和第一個(gè)直角三角形的面積之和為
,第二個(gè)正方形和第二個(gè)直角三角形的面積之和為
,…,第
個(gè)正方形和第
個(gè)直角三角形的面積之和為
.
設(shè)第一個(gè)正方形的邊長(zhǎng)為1.
請(qǐng)解答下列問題:
(1)
______.
(2)通過探究,用含
的代數(shù)式表示
,則
______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,若將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°得到△EFC,連接AF、BE.
(1)求證:四邊形ABEF是平行四邊形;
(2)當(dāng)∠ABC為多少度時(shí),四邊形ABEF為矩形?請(qǐng)說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于鈍角β,定義它的三角函數(shù)值如下:
sinβ=sin(180°﹣β),cosβ=﹣cos(180°﹣β),tanβ=﹣tan(180°﹣β).
(1)求sin120°,cos135°,tan150°的值;
(2)若一個(gè)三角形的三個(gè)內(nèi)角的比是1:1:4,A,B是這個(gè)三角形的兩個(gè)頂點(diǎn),sinA,cosB是方程ax2﹣bx﹣1=0的兩個(gè)不相等的實(shí)數(shù)根,求a、b的值及∠A和∠B的大。
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com