【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1)、B(4,2)、C(3,4)
![]()
(1)請畫出將△ABC向左平移4個單位長度后得到的圖形
,直接寫出點
的坐標(biāo);
(2)請畫出△ABC繞原點O順時針旋轉(zhuǎn)90的圖形
,直接寫出點
的坐標(biāo);
(3)在x軸上找一點P,使PA+PB的值最小,請直接寫出點P的坐標(biāo).
【答案】(1)
,作圖見解析,(2)
,作圖見解析,(3)
,作圖見解析.
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點A、B、C平移后的對應(yīng)點的位置,然后順次連接即可;
(2)找出點A、B、C繞原點O順時針旋轉(zhuǎn)90°的對稱點的位置,然后順次連接即可;
(3)找出A的對稱點A′,連接BA′,與x軸交點即為P.
解:(1)如圖所示:點
的坐標(biāo)(-3,1);
(2)如圖所示:點
的坐標(biāo)(1,-1);
(3)找出A的對稱點A′(1,-1), 連接BA′,與x軸交點即為P;
則
(
重合),
則
即為所求作的點,
如圖所示:點P坐標(biāo)為(2,0).
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一批貨物要運(yùn)往某地,貨主準(zhǔn)備租用汽車運(yùn)輸公司的甲、乙兩種貨車,已知過去兩次租用這兩種貨車的運(yùn)貨情況如下表:
(1)分別求甲、乙兩種貨車每輛載重多少噸?
(2)現(xiàn)租用該公司3輛甲種貨車和5輛乙種貨車剛好一次運(yùn)完這批貨物,如果按每噸付運(yùn)費(fèi)120元計算,貨主應(yīng)付運(yùn)費(fèi)多少元?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是拋物線y=2(x﹣2)2對稱軸上的一個動點,直線x=t平行y軸,分別與y=x、拋物線交于點A、B.若△ABP是以點A或點B為直角頂點的等腰直角三角形,求滿足條件的t的值,則t= .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,直線y=8﹣2x與y軸交于點A,與x軸交于點B,直線y=x+b與y軸交于點C,與x軸交于點D,如果兩直線交于點P,且AC:CO=3:5(AO>CO)
![]()
(1)求點A、B的坐標(biāo)
(2)求直線y=x+b的函數(shù)解析式
(3)求四邊形COBP的面積S
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線
與坐標(biāo)軸分別交于點A、點B、點C,并且∠ACB=90,AB=10.
(1)求證:△OAC∽△OCB;
(2)求該拋物線的解析式;
(3)若點P是(2)中拋物線對稱軸上的一個動點,是否存在點P使得△PAC為等腰三角形,若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點P是正方形ABCD內(nèi)一點,點P到點A,B和D的距離分別為1,2
,
.△ADP沿點A旋轉(zhuǎn)至△ABP′,連接PP′,并延長AP與BC相交于點Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大。
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(
)一列數(shù)
,
,
,
,
具有下面的規(guī)律:
,
,若
,則
_______.
(
)若代數(shù)式
的結(jié)果是
,則
最小值是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=AD=2,∠A=60°,BC=
,CD=3.
(1)求∠ADC的度數(shù);
(2)求四邊形ABCD的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,對角線AC、BD相交于點O,AB⊥AC,AB=3cm,BC=5cm.點P從A點出發(fā)沿AD方向勻速運(yùn)動,速度為1cm/s.連結(jié)PO并延長交BC于點Q,設(shè)運(yùn)動時間為t(0<t<5).
(1)當(dāng)t為何值時,四邊形ABQP是平行四邊形?
(2)設(shè)四邊形OQCD的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使點O在線段AP的垂直平分線上?若存在,求出t的值;若不存在,請說明理由.
備用圖
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com