【題目】某公司員工分別在A、B、C三個住宅區(qū),A區(qū)有30人,B區(qū)有15人,C區(qū)有10人,三個區(qū)在一條直線上,位置如圖所示,該公司的接送車打算在此間只設(shè)一個?奎c,為使所有員工步行到?奎c的路程之和最小,那么?奎c的位置應(yīng)設(shè)在( )
![]()
A.A區(qū)B.B區(qū)C.C區(qū)D.A.B兩區(qū)之間
【答案】A
【解析】
根據(jù)題意分別計算停靠點分別在A、B、C各點和A區(qū)、B區(qū)之間時員工步行的路程和,選擇最小的即可求解.
解:∵當?奎c在A區(qū)時,所有員工步行到停靠點路程和是:
15×100+10×300=4500m,
當?奎c在B區(qū)時,所有員工步行到停靠點路程和是:30×100+10×200=5000m,
當停靠點在C區(qū)時,所有員工步行到?奎c路程和是:30×300+15×200=12000m,
當停靠點在A、B區(qū)之間時,
設(shè)在A區(qū)、B區(qū)之間時,設(shè)距離A區(qū)x米,
則所有員工步行路程之和=30x+15(100-x)+10(100+200-x),
=30x+1500-15x+3000-10x,
=5x+4500,
∴當x=0時,即在A區(qū)時,路程之和最小,為4500米;
綜上,當?奎c在A區(qū)時,所有員工步行到?奎c路程和最小,那么?奎c的位置應(yīng)該在A區(qū).
故選:A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)課上張老師將課本
頁第
題進行了改編,圖形不變.請你完成下面問題.
如圖,
.求證:![]()
![]()
如圖,
.求證:![]()
![]()
如圖,
求證:![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船航行到B處時,測得小島A在船的北偏東60°的方向上,輪船從B處繼續(xù)向正東方向航行100海里到達C處時,測得小島A在船的北偏東30°的方向上,AD⊥BC于點D,求AD的長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,∠1=∠2,CF平分∠DCE.
![]()
(1)試判斷直線AE與BF有怎樣的位置關(guān)系,并說明理由;
(2)若∠1=80°,求∠3的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+
經(jīng)過A(1,0),B(7,0)兩點,交y軸于D點,以AB為邊在x軸上方作等邊三角形ABC.![]()
(1)求拋物線的解析式;
(2)在x軸上方的拋物線上是否存在點M,是S△ABM=
S△ABC?若存在,請求出點M的坐標;若不存在,請說明理由;
(3)如圖2,E是線段AC上的動點,F(xiàn)是線段BC上的動點,AF與BE相交于點P.
①若CE=BF,試猜想AF與BE的數(shù)量關(guān)系及∠APB的度數(shù),并說明理由;
②若AF=BE,當點E由A運動到C時,請直接寫出點P經(jīng)過的路徑長.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的是A,B,C,D三點,按如下步驟作圖:①先分別以A,B兩點為圓心,以大于
AB的長為半徑作弧,兩弧相交于M、N兩點,作直線MN;②再分別以B,C兩點為圓心,以大于
的長為半徑作弧,兩弧相交于G,H兩點,作直線GH,GH與MN交于點P,若∠BAC=66°,則∠BPC等于( )![]()
A.100°
B.120°
C.132°
D.140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了搞好對“傳統(tǒng)文化學(xué)習”的宣傳活動,對本校部分學(xué)生(隨機抽查)進行了一次相關(guān)知識了解程度的調(diào)查測試(成績分為A、B、C、D、E五個組,x表示測試成績).通過對測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息解答以下問題:![]()
(1)參加調(diào)查測試的學(xué)生為人;
(2)將條形統(tǒng)計圖補充完整;
(3)本次調(diào)查測試成績中的中位數(shù)落在組內(nèi);
(4)若測試成績在80分以上(含80分)為優(yōu)秀,該中學(xué)共有學(xué)生2600人,請你根據(jù)樣本數(shù)據(jù)估計全校學(xué)生測試成績?yōu)閮?yōu)秀的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,O為直線AB上一點,∠DOE=90°.
(1)如圖1,若∠AOC=130°,OD平分∠AOC.
①求∠BOD的度數(shù);
②請通過計算說明OE是否平分∠BOC.
(2)如圖2,若∠BOE:∠AOE=2:7,求∠AOD的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD,AF分別為△ABC的中線和高,BE為△ABD的角平分線.
![]()
(1)若∠BED=40°,∠BAD=25°,求∠BAF的大;
(2)若△ABC的面積為40,BD=5,求AF的長.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com