【題目】如圖,在四邊形ABCD中,AB∥CD,∠ABC=∠BCD=90°,AD=10cm,BC=8cm,CD=16cm.點P從點A出發(fā),以每秒3cm的速度沿折線段AB—BC—CD運動,點Q從點D出發(fā),以每秒2cm的速度沿線段DC方向向點C運動.已知動點P、Q同時發(fā),設(shè)運動時間為t秒(
).
(1)求AB的長;
(2)當(dāng)四邊形PBQD為平行四邊形時,求四邊形PBQD的周長;
(3)在點P運動過程中,當(dāng)
秒的時候,使得△BPD的面積為20cm2.
![]()
【答案】(1)10;(2)
;(3)
或![]()
【解析】
(1)如圖1中,作AH⊥CD于H.則四邊形ABCH是矩形解直角三角形求出DH即可解決問題;
(2)當(dāng)四邊形PBQD為平行四邊形時,點P在AB上,點Q在DC上,根據(jù)PB=DQ構(gòu)建方程解決問題即可;
(3)分三種情形:①當(dāng)點P在線段AB上時.②當(dāng)點P在線段BC上時.③當(dāng)點P在線段CD上時,分別利用三角形三角形面積公式列方程計算求解即可.
解:(1)如圖1中,作AH⊥CD于H.
![]()
∵∠AHC=∠B=∠C=90°,
∴四邊形ABCH是矩形,
∴AH=BC=8cm,AB=CH,
在Rt△ADH中,∵∠AHD=90°,AD=10cm,AH=8cm,
∴DH=
(cm),
∴AB=CH=CD-DH=16-6=10(cm).
(2)當(dāng)四邊形
為平行四邊形時,
且
.
由題知:BP=10-3t,DQ=2t,
∴
,解得:![]()
∴
,
∴![]()
∴![]()
![]()
∴平行四邊形
的周長
.
![]()
(3)當(dāng)
在線段
上時,
,
,解得
![]()
當(dāng)
在線段
上時,
,
,解得![]()
![]()
當(dāng)點
在線段
上時,DP=34-3t
,解得
(由
,所以此解舍去),
![]()
綜上所述,
,或
秒
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,四邊形
中,
,
,點
分別在邊
上,且
,求證:
.
![]()
(2)如圖2,四邊形
中,
,點
在邊
上,連接
,
平分
交
于點
,
,
,連接
.
①找出圖中與
相等的線段,并加以證明;
②求
的度數(shù)(用含
的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣x2+bx+c經(jīng)過點B(﹣1,0)和點C(2,3).
(1)求此拋物線的函數(shù)表達式;
(2)如果此拋物線上下平移后過點(﹣2,﹣1),試確定平移的方向和平移的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形紙片ABC中,AD⊥BC與點D,BC=2,AD=
,沿AD剪成兩個三角形.用這兩個三角形拼成平行四邊形,該平行四邊形中較長對角線的長為__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)
的圖象與x軸交于點A,B,與y軸交于點C.點P是該函數(shù)圖象上的動點,且位于第一象限,設(shè)點P的橫坐標為x.
(1)寫出線段AC, BC的長度:AC= ,BC= ;
(2)記△BCP的面積為S,求S關(guān)于x的函數(shù)表達式;
(3)過點P作PH⊥BC,垂足為H,連結(jié)AH,AP,設(shè)AP與BC交于點K,探究:是否存在四邊形ACPH為平行四邊形?若存在,請求出
的值;若不存在,請說明理由,并求出
的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊△ABC中,M是邊BC延長線上一點,連接AM交△ABC的外接圓于點D,延長BD至N,使得BN=AM,連接CN、MN,
(1)求證:△CMN是等邊三角形;
(2)判斷CN與⊙O的位置關(guān)系,并說明理由;
(3)若AD:AB=3:4,BN=4,求等邊△ABC的邊長.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在下列條件中,不能作為判斷△ABD≌△BAC的條件是( )
![]()
A. ∠D=∠C,∠BAD=∠ABC B. ∠BAD=∠ABC,∠ABD=∠BAC
C. BD=AC,∠BAD=∠ABC D. AD=BC,BD=AC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市教育行政部門為了了解初一學(xué)生每學(xué)期參加綜合實踐活動的情況,隨機抽樣調(diào)查了某校初一學(xué)生一個學(xué)期參加綜合實踐活動的天數(shù),并用得到的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,回答下列問題:
![]()
(1)扇形統(tǒng)計圖中a的值為_____,“活動時間為4天”的扇形所對圓心角的度數(shù)為_____°,該校初一學(xué)生的總?cè)藬?shù)為______;
(2)補全頻數(shù)分布直方圖;
(3)如果該市共有初一學(xué)生6000人,請你估計“活動時間不少于4天”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為發(fā)展校園足球運動,某縣城區(qū)四校決定聯(lián)合購買一批足球運動裝備,市場調(diào)查發(fā)現(xiàn):甲、乙兩商場以同樣的價格出售同種品牌的足球隊服和足球,已知每套隊服比每個足球多50元,兩套隊服與三個足球的費用相等,經(jīng)洽談,甲商場優(yōu)惠方案是:每購買十套隊服,送一個足球;乙商場優(yōu)惠方案是:若購買隊服超過80套,則購買足球打八折.
(1)求每套隊服和每個足球的價格是多少?
(2)若城區(qū)四校聯(lián)合購買100套隊服和a個足球,請用含a的式子分別表示出到甲商場和乙商場購買裝備所花的費用;
(3)假如你是本次購買任務(wù)的負責(zé)人,你認為到哪家商場購買比較合算?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com