【題目】已知:已知Rt△ABC中,∠ACB=90°,D、E分別是AC、BC上的點(diǎn),連DE,且
,tanB
,如圖1.
(1)如圖2,將△CDE繞C點(diǎn)旋轉(zhuǎn),連AD、BE交于H,求證:AD⊥BE;
(2)如圖3,當(dāng)△CDE繞C點(diǎn)旋轉(zhuǎn)過程中,當(dāng)CH
時(shí),求
AH﹣BH的值;
(3)若CD=1,當(dāng)△CDE繞C點(diǎn)旋轉(zhuǎn)過程中,直接寫出AH的最大值是 .
![]()
【答案】(1)證明見解析;(2)
;(3)2
.
【解析】
(1)設(shè)BE交AC于O,首先證明△ACD∽△BCE,然后有∠DAC=∠EBC,通過等量代換即可得出結(jié)論;
(2)在HB上取一點(diǎn)T,使得HT
AH,連接AT,首先通過三角函數(shù)證明∠ATH=∠ABC,然后證明△AHT∽△ACB,進(jìn)而可證△CAH∽△BAT,則有
,即可求解;
(3)因?yàn)?/span>AH=ABsin∠ABH,所以當(dāng)∠ABH最大時(shí),AH的值最大,此時(shí)CE⊥BE,此時(shí)四邊形ECDH是矩形,然后利用矩形的性質(zhì)和勾股定理即可求解.
(1)如圖2中,設(shè)BE交AC于O.
![]()
∵∠ACB=∠DCE=90°,
∴∠ACD=∠ECB.
∵
,
∴
,
∴△ACD∽△BCE,
∴∠DAC=∠EBC.
∵∠AOH=∠BOC,
∴∠AHO=∠BCO=90°,
∴AD⊥BE.
(2)如圖2中,在HB上取一點(diǎn)T,使得HT
AH,連接AT.
在Rt△AHT中,tan∠ATH
,
∵tan∠ABC
,
∴∠ATH=∠ABC.
∵∠ATH+∠HAT=90°,∠ABC+∠CAB=90°,
∴∠HAT=∠CAB,
∴∠CAH=∠BAT,
∴△AHT∽△ACB,
∴
,
∴
,
∴△CAH∽△BAT,
∴
,
∵HT
AH,
設(shè)AH=m,則HT
m,AT
m,
∴
,
∴BT
.
(3)如圖3中,
![]()
在Rt△AHB中,∵AH=ABsin∠ABH,∴當(dāng)∠ABH最大時(shí),AH的值最大,此時(shí)CE⊥BE.
∵∠DCE=∠CEH=∠EHD=90°,
∴此時(shí)四邊形ECDH是矩形,
∴DH=EC,∠ADC=∠CDH=90°,
由題意CD=1,EC
,AC
,
∴DH=CE![]()
在Rt△ACD中,AD
,
∴AH=AD+DH
2
,
∴AH的最大值為2
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)舉辦的購物狂歡節(jié)期間與一知名APP支付平臺(tái)合作,為答謝顧客,該商場(chǎng)對(duì)某款價(jià)格為a元/件(a>0)的商品開展促銷活動(dòng).據(jù)統(tǒng)計(jì),在此期間顧客購買該商品的支付情況如表:
支付方式 | 現(xiàn)金支付 | 購物卡支付 | APP支付 |
頻率 | 10% | 30% | 60% |
優(yōu)惠方式 | 按9折支付 | 按8折支付 | 其中有 |
將上述頻率作為事件發(fā)生的概率,回答下列問題:
(1)顧客購買該商品使用APP支付的概率是 ;
(2)求顧客購買該商品獲得的優(yōu)惠超過20%的概率;
(3)該商品在促銷優(yōu)惠期間平均每件商品優(yōu)惠多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推動(dòng)實(shí)施健康中國(guó)戰(zhàn)略,樹立國(guó)家健康形象.手機(jī)APP推出多款健康運(yùn)動(dòng)軟件,如“微信運(yùn)動(dòng)”.王老師隨機(jī)調(diào)查了我校50名教師某日“微信運(yùn)動(dòng)”中的步數(shù),并進(jìn)行統(tǒng)計(jì)整理,繪制了如下的統(tǒng)計(jì)圖表.
步數(shù) | 頻數(shù) | 頻率 |
| 8 |
|
| 15 | 0.3 |
|
| 0.24 |
| 10 | 0.2 |
| 3 | 0.06 |
| 2 | 0.04 |
合計(jì) | 50 |
|
![]()
請(qǐng)根據(jù)以上信息,解答下列問題:
(1)
_______,
_______,
________;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若某人一天的走路步數(shù)不低于16000步,將被“微信運(yùn)動(dòng)”評(píng)為“運(yùn)動(dòng)達(dá)人”.我市市區(qū)約有4000名初中教師,根據(jù)此項(xiàng)調(diào)查請(qǐng)估計(jì)市區(qū)被評(píng)為“運(yùn)動(dòng)達(dá)人”教師有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,ABCD是平行四邊形對(duì)角線AC,BD相交于點(diǎn)O,直線EF過點(diǎn)O,分別交AD,BC于點(diǎn)E,F.
(1)求證:AE=CF.
(2)如圖2,若ABCD是老張家的一塊平行四邊形田地。P為水井,現(xiàn)要把這塊田地平均分給兩個(gè)兒子,為了用水方便,要求分給兩個(gè)兒子的田地都與水井P相鄰。請(qǐng)你幫老張家設(shè)計(jì)一下,畫出圖形,并說明理由?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列有規(guī)律的算式:13=1,13+23=9,13+23+33=36,13+23+33+43=100,13+23+33+43+53=225,…,探究并運(yùn)用其規(guī)律計(jì)算:113+123+133+143+153+163+173+183+193+203的結(jié)果可表示為( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
,
為反比例函數(shù)
的圖象上一點(diǎn),以
為直徑的圓的圓心
在
軸上,
與
軸正半軸交于
,則
的值為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情期間,消毒液、口罩成為了咱們的生活必需品.淘寶某醫(yī)用器械藥房推出
種口罩進(jìn)行銷售,醫(yī)用一次性口罩
元
個(gè),醫(yī)用外科口罩
元
個(gè).
(1)學(xué)校為做好開學(xué)復(fù)課準(zhǔn)備,提前購進(jìn)兩種口罩
個(gè),共花費(fèi)
元,請(qǐng)問學(xué)校購買醫(yī)用外科口罩多少個(gè)?
(2)因?yàn)?/span>
月份疫情逐漸過去,各地開始復(fù)工復(fù)產(chǎn),口罩的市場(chǎng)需求量依舊旺盛,該藥房決定用
元再次購進(jìn)一批口罩進(jìn)行銷售.醫(yī)用一次性口罩
個(gè)
盒,每盒
元,醫(yī)用外科口罩
個(gè)
盒,每盒
元.要求購進(jìn)的醫(yī)用外科口罩個(gè)數(shù)不超過醫(yī)用一次性口罩的
倍,但不低于醫(yī)用一次性口罩的
倍.若這批口罩全部銷售完畢,為使獲利最大,該藥房應(yīng)如何進(jìn)貨?最大獲利為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B在x軸上,點(diǎn)C在y軸上,AB=BC=5,AC=8,D為線段AB上一動(dòng)點(diǎn),以CD為邊在x軸上方作正方形CDEF,連接AE.
(1)若點(diǎn)B的坐標(biāo)為(m,0),則m= ;
(2)當(dāng)BD= 時(shí),EA⊥x軸;
(3)當(dāng)點(diǎn)D由點(diǎn)B運(yùn)動(dòng)到點(diǎn)A過程中,點(diǎn)F經(jīng)過的路徑長(zhǎng)為 ;
(4)當(dāng)△ADE面積最大時(shí),求出BD的長(zhǎng)及△ADE面積最大值.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,點(diǎn)E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,BF交AC于G,連接CF.
![]()
(1)求證:△AEF≌△DEB;
(2)若∠BAC=90°,①試判斷四邊形ADCF的形狀,并證明你的結(jié)論;
②若AB=8,BD=5,直接寫出線段AG的長(zhǎng) .
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com