【題目】已知拋物線
為常數(shù),
)與直線
都經(jīng)過
兩點,
是該拋物線上的一個動點,過點
作
軸的垂線交直線
于點
,交x軸于點H.
(1)求此拋物線和直線
的解析式;
(2)當點
在直線
下方時,求
取得最大值時點
的坐標;
(3)設該拋物線的頂點為
直線
與該拋物線的對稱軸交于點
.當
以點為頂點的四邊形是平行四邊形時,求點
的坐標.
【答案】(1)
,
;(2)
;(3)
或
或![]()
【解析】
(1)將
代入函數(shù)解析式,用待定系數(shù)法求拋物線和直線的函數(shù)解析式;
(2)設
,則
,由題意求得
,然后設直線
與
軸交于點
,則
,由等腰直角三角形的性質求得
,然后求得
,然后根據(jù)二次函數(shù)的性質求最值;
(3)求拋物線頂點坐標,然后根據(jù)平行四邊形的性質有CE=PQ,分點P位于直線AB下方和上方時,列方程求m的值,從而確定P點坐標.
解:(1)∵拋物線經(jīng)過兩點
,
![]()
解得![]()
拋物線的解析式為![]()
直線經(jīng)過
兩點,
![]()
解得![]()
直線
的解析式為![]()
(2)設
,則![]()
根據(jù)題意,得![]()
![]()
∵直線
與
軸交于點
,
則![]()
,
![]()
![]()
![]()
當
時,
取得最大值
![]()
∴此時
點坐標為![]()
(3)∵
,
拋物線的頂點
的坐標為![]()
軸,
![]()
![]()
當點
在直線
下方時,四邊形
為平行四邊形,
則
,此時![]()
![]()
解得
(舍去)
點
的坐標為![]()
當點
在直線
上方時,四邊形
為平行四邊形,
則
,此時![]()
![]()
解得
,![]()
點
的坐標為
,![]()
綜上,點
點的坐標為
或
或
.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB為直徑的⊙O交∠BAD的角平分線于C,過C作CD⊥AD于D,交AB的延長線于E.
(1)求證:CD為⊙O的切線.
(2)若
,求cos∠DAB.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形
中,
為對角線
上一點,過點
作
交
于點
,連接
,
為
的中點,連接
.
(1)如圖1,求證:
;
![]()
(2)將圖1中的
繞點
逆時針旋轉45°,如圖2,取
的中點
,連接
.問(1)中的結論是否仍然成立?若成立,給出證明;若不成立,請說明理由.
![]()
(3)將圖1中的
繞點
逆時計旋轉任意角度,如圖3,取
的中點
,連接
.問(1)中的結論是否仍然成立?通過觀察你還能得出什么結論?(均不要求證明)
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標系中,(為坐標原點,點
,點
是
中點,連接(
將
繞點
順時針旋轉,得到
,記旋轉角為
,點
的對應點分別是
,連接
是
中點,連接
.
(1)如圖①,當
時,求點
的坐標;
![]()
(2)如圖②,當
時,求證
,且
;
(3)當
旋轉至點
共線時,求點
的坐標(直接寫出結果即可) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線
與
軸交于點
,交
軸于點
的長為
.
(1)求拋物線的解析式;
(2)點
是第一象限拋物線上的一點,直線
交
軸于
,設點
的橫坐標為
的長為
,用含
的式子表示
;
(3)在
的條件下,過點
作
交
軸于點
,點
在
上,連接
交拋物線于點
,點
在
軸上,
,連接![]()
,求點
的坐標.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=4,P是對角線AC上的動點,以點P為圓心,PC長為半徑作⊙P.當⊙P與矩形ABCD的邊相切時,CP的長為__.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線l:y=﹣
x+4與x軸交于點A,與y軸交于點B,以AB為直徑作⊙M,點P為線段OA上一動點(與點O、A不重合),作PC⊥AB于C,連結BP并延長交⊙O于點D.
![]()
(1)求點A,B的坐標和tan∠BAO的值;
(2)設
=x,tan∠BPO=y.
①當x=1時,求y的值及點D的坐標;
②求y關于x的函數(shù)表達式;
(3)如圖2,連接OC,當點P在線段OA上運動時,求OCPD的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著智能手機的普及,“支付寶支付”和“微信支付”等手機支付方式倍受廣大消費者的青睞,某商場對2019年712月中使用這兩種手機支付方式的情況進行統(tǒng)計,得到如圖所示的折線圖,根據(jù)統(tǒng)計圖中的信息,得出以下四個推斷,其中不合理的是( )
![]()
A.6個月中使用“微信支付”的總次數(shù)比使用“支付寶支付”的總次數(shù)多;
B.6個月中使用“微信支付”的消費總額比使用“支付寶支付”的消費總額大;
C.6個月中11月份使用手機支付的總次數(shù)最多;
D.9月份平均每天使用手機支付的次數(shù)比12月份平均每天使用手機支付的次數(shù)多;
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com