【題目】如圖,表中給出的是某月的月歷,任意選取“U”型框中的7個數(shù)(如陰影部分所示),請你運(yùn)用所學(xué)的數(shù)學(xué)知識來研究,發(fā)現(xiàn)這7個數(shù)的和不可能的是( )
![]()
A.70B.78C.84D.![]()
【答案】B
【解析】
設(shè)“U”型框中的正中間的數(shù)為x,則其他6個數(shù)分別為x15,x13,x8,x-6,x-1,x+1,表示出這7個數(shù)之和,然后分別列出方程解答即可.
設(shè)“U”型框中的正中間的數(shù)為x,則其他6個數(shù)分別為x15,x13,x8,x-6,x-1,x+1,
這7個數(shù)之和為:x15+x13+x8+x-6+x-1+x+1+x=7x-42.
由題意得
A、7x-42=70,解得:x=16,能求得這7個數(shù);
B、7x-42=78,解得:x=
,不能求得這7個數(shù);
C、7x-42=84,解得:x=18,能求得這7個數(shù);
D、7x-42=105,解得:x=21,能求得這7個數(shù).
故選:B.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行“足球在身邊”的專題調(diào)查活動,采取隨機(jī)抽樣的方法進(jìn)行問卷調(diào)查,調(diào)查結(jié)果劃分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個等級,并將調(diào)查結(jié)果繪制成兩幅不完整的統(tǒng)計圖(如圖),請根據(jù)圖中提供的信息,解答下列問題:
(1)被調(diào)查的學(xué)生共有___人.在扇形統(tǒng)計圖中,表示“比較了解”的扇形的圓心角度數(shù)為___度
(2)請用列表法或樹狀分析從
名男生和
名女生中隨機(jī)抽取
名學(xué)生參加“足球在身邊”的知識競賽,抽中
男
女的概率.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一批電視機(jī),一月份每臺毛利潤是售出價的20%(毛利潤=售出價-買入價),二月份該商場將每臺售出價調(diào)低10%(買入價不變),結(jié)果銷售臺數(shù)比一月份增加120%,那么二月份的毛利潤總額與一月份毛利潤總額的比是__________。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列敘述:
①最小的正整數(shù)是
;
②若
是一個負(fù)數(shù),則
一定是負(fù)數(shù);
③用一個平面去截正方體,截面不可能是六邊形;
④三角形是多邊形;
⑤絕對值等于本身的數(shù)是正整數(shù).
其中正確的個數(shù)有( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2﹣2x+3與x軸交于點(diǎn)A、B,把拋物線在x軸及其上方的部分記作C1,將C1關(guān)于點(diǎn)B中心對稱得C2,C2與x軸交于另一點(diǎn)C,將C2關(guān)于點(diǎn)C中心對稱得C3,連接C1與C3的頂點(diǎn),則圖中陰影部分的面積為_________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初一年級兩個班的學(xué)生要到航天科普教育基地進(jìn)行社會大課堂活動,其中初一(1)班有40多人,初一(2)班有50多人,教育基地門票價格如下:
![]()
原計劃兩班都以班為單位分別購票,則一共應(yīng)付1106元.請回答下列問題:
(1)初一(2)班有多少人?
(2)你作為組織者如何購票最省錢?比原計劃省多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=
(k>0)的圖象交于A、B兩點(diǎn),且點(diǎn)A的橫坐標(biāo)為4,
(1)求k的值;
(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;
(3)過原點(diǎn)O的另一條直線l交雙曲線y=
(k>0)于P、Q兩點(diǎn)(P點(diǎn)在第一象限),若由點(diǎn)A、P、B、Q為頂點(diǎn)組成的四邊形面積為224,求點(diǎn)P的坐標(biāo).
![]()
【答案】(1) k=32 (2) x<﹣8或0<x<8 (3) P(﹣7+3
,16+
);或P(7+3
,﹣16+
)
【解析】分析:(1)先將x=4代入正比例函數(shù)y=2x,可得出y=8,求得點(diǎn)A(4,8),再根據(jù)點(diǎn)A與B關(guān)于原點(diǎn)對稱,得出B點(diǎn)坐標(biāo),即可得出k的值;
(2)正比例函數(shù)的值小于反比例函數(shù)的值即正比例函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點(diǎn)的右邊正比例函數(shù)的值小于反比例函數(shù)的值.
(3)由于雙曲線是關(guān)于原點(diǎn)的中心對稱圖形,因此以A、B、P、Q為頂點(diǎn)的四邊形應(yīng)該是平行四邊形,那么△POA的面積就應(yīng)該是四邊形面積的四分之一即56.可根據(jù)雙曲線的解析式設(shè)出P點(diǎn)的坐標(biāo),然后表示出△POA的面積,由于△POA的面積為56,由此可得出關(guān)于P點(diǎn)橫坐標(biāo)的方程,即可求出P點(diǎn)的坐標(biāo).
詳解:(1)∵點(diǎn)A在正比例函數(shù)y=2x上,
∴把x=4代入正比例函數(shù)y=2x,
解得y=8,∴點(diǎn)A(4,8),
把點(diǎn)A(4,8)代入反比例函數(shù)y=
,得k=32,
(2)∵點(diǎn)A與B關(guān)于原點(diǎn)對稱,
∴B點(diǎn)坐標(biāo)為(﹣4,﹣8),
由交點(diǎn)坐標(biāo),根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍,x<﹣8或0<x<8;
(3)∵反比例函數(shù)圖象是關(guān)于原點(diǎn)O的中心對稱圖形,
∴OP=OQ,OA=OB,
∴四邊形APBQ是平行四邊形,
∴S△POA=S平行四邊形APBQ×=
×224=56,
設(shè)點(diǎn)P的橫坐標(biāo)為m(m>0且m≠4),
得P(m,
),
過點(diǎn)P、A分別做x軸的垂線,垂足為E、F,
∵點(diǎn)P、A在雙曲線上,
∴S△POE=S△AOF=16,
若0<m<4,如圖,
∵S△POE+S梯形PEFA=S△POA+S△AOF,
∴S梯形PEFA=S△POA=56.
∴
(8+
)(4﹣m)=56.
∴m1=﹣7+3
,m2=﹣7﹣3
(舍去),
∴P(﹣7+3
,16+
);
若m>4,如圖,
∵S△AOF+S梯形AFEP=S△AOP+S△POE,
∴S梯形PEFA=S△POA=56.
∴
×(8+
)(m﹣4)=56,
解得m1=7+3
,m2=7﹣3
(舍去),
∴P(7+3
,﹣16+
).
∴點(diǎn)P的坐標(biāo)是P(﹣7+3
,16+
);或P(7+3
,﹣16+
).
![]()
![]()
點(diǎn)睛:本題考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=
中k的幾何意義.這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.利用數(shù)形結(jié)合的思想,求得三角形的面積.
【題型】解答題
【結(jié)束】
23
【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC=AD=9,∠ABC=70°,點(diǎn)E,F(xiàn)分別在線段AD,DC上(點(diǎn)E與點(diǎn)A,D不重合),且∠BEF=110°.
(1)求證:△ABE∽△DEF.
(2)當(dāng)點(diǎn)E為AD中點(diǎn)時,求DF的長;
(3)在線段AD上是否存在一點(diǎn)E,使得F點(diǎn)為CD的中點(diǎn)?若存在,求出AE的長度;若不存在,試說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家經(jīng)常用小石子擺成各種形狀來研究數(shù)學(xué)問題.
如圖1,由于這些三角形是由1個,3個,6個,10個,… 小石子擺成的,所以他們稱1,3,6,10,…,這些數(shù)為三邊形數(shù);類似的,如圖2,他們稱1,4,9,16,…,這樣的數(shù)為四邊形數(shù).
![]()
(1)既是三邊形數(shù),又是四邊形數(shù),且大于1的最小正整數(shù)是 ;
(2)如果記第n個k邊形小石子的個數(shù)為
(k≥3),那么易得
,
,
.
①
;
;
②
;
;
③ 如果
,那么
;
(3)如果進(jìn)一步研究發(fā)現(xiàn)
,
,…,那么
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市電力部門對居民用電按月收費(fèi),標(biāo)準(zhǔn)如下:①用電不超過
度的,每度收費(fèi)
元;②用電超過
度的,超過部分每度收費(fèi)
元.請根據(jù)上述收費(fèi)標(biāo)準(zhǔn)解答下列問題:
(1)小明家
月份用電
度,應(yīng)交電費(fèi)______________元;
(2)小明家
月交電費(fèi)
元,則他家
月份用電多少度?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com