【題目】如圖,在□ABCD中,AC、BD相交于點O,點E、F在BD上,且BE=DF.連
接AE、CF.
(1)求證△AOE≌△COF;
(2)若AC⊥EF,連接AF、CE,判斷四邊形AECF的形狀,并說明理由.
![]()
科目:初中數學 來源: 題型:
【題目】如圖,一段拋物線:y=﹣x(x﹣2)(0≤x≤2)記為C1,它與x軸交于兩點O,A1;將C1繞A1旋轉180°得到C2,交x軸于A2;將C2繞A2旋轉180°得到C3,交x軸于A3;…如此進行下去,直至得到C6,若點P(11,m)在第6段拋物線C6上,則m=_____.
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將平行四邊形ABCD沿對角線BD進行折疊,折疊后點C落在點F處,DF交AB于點E.
![]()
(1)求證:
;
(2)判斷AF與BD是否平行,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,
兩點在數軸上,點
對應的數為-15,
,
兩點分別從點
點
同時出發(fā),沿數軸正方向勻速運動,速度分別為每秒3個單位長度和每秒2個單位長度.
(1)數軸上點
對應的數是
(2)經過多少秒時,
兩點分別到原點的距離相等?
(3)當
兩點分別到點
的距離相等時,在數軸上點
對應的數是
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在2019年春季環(huán)境整治活動中,某社區(qū)計劃對面積為
的區(qū)域進行綠化.經投標,由甲、乙兩個工程隊來完成,若甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為
區(qū)域的綠化時,甲隊比乙隊少用5天.
(1)求甲、乙兩工程隊每天能完成綠化的面積;
(2)設甲工程隊施工
天,乙工程隊施工
天,剛好完成綠化任務,求
關于
的函數關系式;
(3)在(2)的條件下,若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數不超過25天,則如何安排甲乙兩隊施工的天數,使施工總費用最低?并求出最低費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知
,
與
兩個角的角平分線相交于點
.
![]()
(1)如圖1,若
,求
的度數.
(2)如圖2,若
,
,試寫出
與
之間的數量關系并證明你的結論.
(3)若
,
,
,請直接用含有
,
的代數式表示出
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知AD∥BC,∠A=∠C=50°,線段AD上從左到右依次有兩點E、F(不與A、D重合)
(1)AB與CD是什么位置關系,并說明理由;
(2)觀察比較∠1、∠2、∠3的大小,并說明你的結論的正確性;
(3)若∠FBD:∠CBD=1:4,BE平分∠ABF,且∠1=∠BDC,求∠FBD的度數,判斷BE與AD是何種位置關系?
![]()
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如果A、B、C三點在同一直線上,且線段AB=6 cm,BC=4 cm,若M,N分別為AB,BC的中點,那么M,N兩點之間的距離為( )
A. 5 cm B. 1 cm C. 5或1 cm D. 無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2019年10月1日,中華人民共和國成立70周年,成都市民通過各種方式觀看了國慶閱兵直播.武侯區(qū)某街道辦為了解居民的“觀看方式”和 “最喜歡的分列式方隊”的情況,隨機調查了本街道部分居民(每位被調查者需完成以上兩個方面的問題),并將調查結果繪制成了如下兩幅不完整的統(tǒng)計圖,其中通過“電視端”“方式觀看的居民有320人.
![]()
請根據以上信息,解答下列問題:
(1)求本次隨機調查的總人數;
(2)請補全條形統(tǒng)計圖;
(3)若武侯區(qū)該街道居民約有60000人,試估計其中最喜歡“護旗方隊”的人數.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com