【題目】已知,在△ABC和△EFC中,∠ABC=∠EFC=90°,點E在△ABC內(nèi),且∠CAE+∠CBE=90°
![]()
(1)如圖1,當(dāng)△ABC和△EFC均為等腰直角三角形時,連接BF,
①求證:△CAE∽△CBF;
②若BE=2,AE=4,求EF的長;
(2)如圖2,當(dāng)△ABC和△EFC均為一般直角三角形時,若
=k,BE=1,AE=3,CE=4,求k的值.
【答案】(1)①見解析;②2
;(2)![]()
【解析】
(1)①先判斷出∠BCF=∠ACE,再判斷出
,即可得出結(jié)論;
②先判斷出∠CBF=∠CAE,進(jìn)而判斷出∠EBF=90°,再求出BF=2
,最后用勾股定理求解即可得出結(jié)論;
(2)先判斷出∠BCF=∠ACE,再判斷出
,進(jìn)而判斷出△BCF∽△ACE,進(jìn)而表示出BF=
,再表示出EF=
,最后用勾股定理得,BE2+BF2=EF2,建立方程求解即可得出結(jié)論.
解:(1)①∵△ABC和△CEF都是等腰直角三角形,
∴∠ECF=∠ACB=45°,
∴∠BCF=∠ACE,
∵△ABC和△CEF都是等腰直角三角形,
∴CE=
CF,AC=
CB,
∴
=
,
∴
,
∴△BCF∽△ACE;
②由①知,△BCF∽△ACE,
∴∠CBF=∠CAE,
=
,
∴BF=
AE=
×4=
,
∵∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,
即:∠EBF=90°,
根據(jù)勾股定理得,EF=
;
(2)如圖(2),連接BF,
![]()
在Rt△ABC中,tan∠ACB=
=k,
同理,tan∠ECF=k,
∴tan∠ACB=tan∠ECF,
∴∠ACB=∠ECF,
∴∠BCF=∠ACE,
在Rt△ABC中,設(shè)BC=m,則AB=km,
根據(jù)勾股定理得,AC=
;
在Rt△CEF中,設(shè)CF=n,則EF=nk,同理,CE=
,
∴
,
,
∴
,
∵∠BCF=∠ACE,
∴△BCF∽△ACE,
∴∠CBF=∠CAE,
∵∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,
即:∠EBF=90°,
∵△BCF∽△ACE,
∴![]()
∴BF=
AE=![]()
∵CE=4,
∴
,
∴n=
,
∴EF=
,
在Rt△EBF中,根據(jù)勾股定理得,BE2+BF2=EF2,
∴12+(
)2=(
)2,
∴k=
或k=
(舍),
即:k的值為
.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABCD中,∠ABC=60°,AB=4,BC=m,E為BC邊上的動點,連結(jié)AE,作點B關(guān)于直線AE的對稱點F.
(1)若m=6,①當(dāng)點F恰好落在∠BCD的平分線上時,求BE的長;
②當(dāng)E、C重合時,求點F到直線BC的距離;
(2)當(dāng)點F到直線BC的距離d滿足條件:2
﹣2≤d≤2
+4,求m的取值范圍.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(7分)某中學(xué)1000名學(xué)生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:
成績分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計 | ■ | 1 |
(1)寫出a,b,c的值;
(2)請估計這1000名學(xué)生中有多少人的競賽成績不低于70分;
(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD中,AB=4cm,BC=8cm.動點P在邊BC上從點B向C運動,速度為1cm/s;同時動點Q從點C出發(fā),沿折線C→D→A運動,速度為2cm/s.當(dāng)一個點到達(dá)終點時,另一個點隨之停止運動。設(shè)點P運動的時間為t(s),△BPQ的面積為S(cm2),則描述S(cm2)與時間t(s)的函數(shù)關(guān)系的圖象大致是( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖①,P是⊙O外的一點,直線PO分別交⊙O于點A、B,可以發(fā)現(xiàn)PA是點P到⊙O上的點的最短距離.
![]()
(1)直接運用:如圖②,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC為直徑的半圓交AB于D,P是弧CD上的一個動點,連接AP,則AP的最小值是 .
(2)構(gòu)造運用:如圖③,在邊長為8的菱形ABCD中,∠A=60°,M是AD邊的中點,N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,請求出A′C長度的最小值.
(3)綜合運用:如圖④,平面直角坐標(biāo)系中,分別以點A(﹣2,3),B(3,4)為圓心,分別以1、2為半徑作⊙A、⊙B,M、N分別是⊙A、⊙B上的動點,P為x軸上的動點,則PM+PN的最小值等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB是直徑,過點A作直線MN,且∠MAC=∠ABC.
![]()
(1)求證:MN是⊙O的切線.
(2)設(shè)D是弧AC的中點,連結(jié)BD交AC于點G,過點D作DE⊥AB于點E,交AC于點F.
①求證:FD=FG.
②若BC=3,AB=5,試求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)“低碳生活”,常選擇以自行車作為代步工具.如圖1所示是一輛自行車的實物圖,車架檔AC與CD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,車輪半徑28cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2
![]()
圖1 圖2
(1)求車座點E到地面的距離;(結(jié)果精確到1cm)
(2)求車把點D到車架檔直線AB的距離.(結(jié)果精確到1cm).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解班級學(xué)生數(shù)學(xué)課前預(yù)習(xí)的具體情況,鄭老師對本班部分學(xué)生進(jìn)行了為期一個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達(dá)標(biāo),并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
![]()
(1)C類女生有 名,D類男生有 名,將上面條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中“課前預(yù)習(xí)不達(dá)標(biāo)”對應(yīng)的圓心角度數(shù)是 ;
(3)為了共同進(jìn)步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點 A 和點 C 分別在x 軸和 y 軸的正半軸上,OA=6,OC=4,以 OA,OC 為鄰邊作矩形 OABC, 動點 M,N 以每秒 1 個單位長度的速度分別從點 A、C 同時出發(fā),其中點 M 沿 AO 向終點 O 運動,點 N沿 CB 向終點 B 運動,當(dāng)兩個動點運動了 t 秒時,過點 N 作NP⊥BC,交 OB 于點 P,連接 MP.
![]()
(1)直接寫出點 B 的坐標(biāo)為 ,直線 OB 的函數(shù)表達(dá)式為 ;
(2)記△OMP 的面積為 S,求 S 與 t 的函數(shù)關(guān)系式
;并求 t 為何值時,S有最大值,并求出最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com