分析 (1)由題意,知△ABC≌△A1B1C1,根據(jù)矩形的性質(zhì)及全等三角形的性質(zhì),可證四邊形ABC1C是平行四邊形,再根據(jù)平行四邊形的性質(zhì)及相互間的等量關(guān)系即可得出;
(2)由題意,知△ABC≌△A1B1C1,根據(jù)矩形的性質(zhì)及全等三角形的性質(zhì),及相互間的等量關(guān)系即可得出.
解答
(1)證明:如圖1,由題意,知△ABC≌△A1B1C1,
∴AB=A1B1,BC=B1C1,∠2=∠7,∠A=∠1.
∴∠3=∠A=∠1,
∴BC1∥AC.
∴四邊形ABC1C是平行四邊形.
∴AB∥CC1.
∴∠4=∠7=∠2.
∵∠5=∠6,
∴∠B1C1C=∠B1BC.
﹙2)解:∠A1C1C=∠A1BC.
理由如下:如圖2,由題意,知△ABC≌△A1B1C1,![]()
∴AB=A1B1,BC1=BC,∠1=∠8,∠A=∠2.
∴∠3=∠A,∠4=∠7.
∵∠1+∠FBC=∠8+∠FBC,
∴∠C1BC=∠A1BA.
∵∠4=$\frac{1}{2}$(180°-∠C1BC),∠A=$\frac{1}{2}$(180°-∠A1BA),
∴∠4=∠A.
∴∠4=∠2
∵∠5=∠6,
∴∠A1C1C=∠A1BC.
點(diǎn)評 本題考查的是翻折變換,涉及到矩形的性質(zhì)及全等三角形的性質(zhì),相似三角形的判定和性質(zhì)等知識點(diǎn),難度較大.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{{2\sqrt{5}}}{5}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | 2 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com