【題目】在△ABC中,∠BAC=90°,AB=AC,點(diǎn)D為直線(xiàn)BC上一動(dòng)點(diǎn)(點(diǎn)D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.
(1)觀(guān)察猜想
如圖1,當(dāng)點(diǎn)D在線(xiàn)段BC上時(shí),
①BC與CF的位置關(guān)系,
②BC,CD,CF之間的數(shù)量關(guān)系為;
(2)數(shù)學(xué)思考
如圖2,當(dāng)點(diǎn)D在線(xiàn)段CB的延長(zhǎng)線(xiàn)上時(shí),結(jié)論①,②是否仍然成立?若成立,請(qǐng)給予證明;
若不成立,請(qǐng)你寫(xiě)出正確結(jié)論再給予證明;
(3)拓展延伸
如圖3,當(dāng)點(diǎn)D在線(xiàn)段BC的延長(zhǎng)線(xiàn)上時(shí),延長(zhǎng)BA交CF于點(diǎn)G,連接GE.若已知AB=2
,CD=
BC,求CF,EG.
![]()
【答案】(1) ①垂直,②BC=CF+CD;(2) CF⊥BC成立;BC=CD+CF不成立,為CD=CF+BC;
(3)CF=5;EG=
.
【解析】
(1)①根據(jù)正方形的性質(zhì)得到∠BAC=∠DAH=
, 推出ΔDAB≌ΔFAC, 根據(jù)全等三角形的性質(zhì)即可得到結(jié)論; ②由正方形ADEF的性質(zhì)可推出ΔDAB≌ΔFAC, 根據(jù)全等三角形的性質(zhì)得到CF=BD, ∠ACF=∠ABD, 根據(jù)余角的性質(zhì)即可得到結(jié)論;
(2) 根據(jù)正方形的性質(zhì)得到∠BAC=∠DAF=
, 推出ΔDAB≌ΔFAC, 根據(jù)全等三角形的性質(zhì)以及等腰直角三角形的角的性質(zhì)可得到結(jié)論.
(3) 根據(jù)等腰直角三角形的性質(zhì)得到BC=
AB=4, AH=
BC=2, 求得DH=3, 根據(jù)正方形的性質(zhì)得到AD=DE, ∠ADE=
, 根據(jù)矩形的性質(zhì)得到NE=CM, EM=CN, 由角的性質(zhì)得到∠ADH=∠DEM, 根據(jù)全等三角形的性質(zhì)得到EM=DH=3,DM=AH=2, 等量代換得到CN=EM=3, EN=CM=3, 根據(jù)等腰直角三角形的性質(zhì)得到CG=BC=4,根據(jù)勾股定理即可得到結(jié)論.
解:(1)正方形ADEF 中, AD=AF ,
∠BAC=∠DAF=
,
∠BAD=∠CAF,
在ΔDAB與ΔFAC中,
∠BAD=∠CAF,AB=AC, AD=AF
ΔDAB≌ΔFAC (SAS),
∠B=∠ACF,
∠ACB+∠ACF=
,即 BC⊥CF;
故答案為:垂直;
②ΔDAB≌ΔFAC,
CF=BD,
BC=BD+CD,
BC=CF+CD;
故答案為: BC=CF+CD;
(2)CF⊥BC成立;BC=CD+CF不成立,CD=CF+BC.
正方形ADEF 中, AD=AF,
∠BAC=∠DAF=
,
∠BAD=∠CAF ,
在ΔDAB與ΔFAC中,
∠BAD=∠CAF ,AB=AC, AD=AF
ΔDAB ≌ΔFAC(SAS),
∠ABD=∠ACF ,
∠BAC=
, AB=AC,
∠ACB=∠ABC=
.
∠ABD=
-
=
,
∠BCF=∠ACF-∠ACB=
-
=
,
CF⊥BC.
CD=DB+BC , DB=CF ,
CD=CF+BC.
(3)過(guò)A作AH⊥BC于H,過(guò)E作EM⊥BD于M,EN⊥CF于N,
∠BAC=
, AB=AC,
BC=
AB=4,AH=
BC=2 ,
CD=
BC=1,CH=
BC=2 ,
DH=3,
由(2)證得BC⊥CF, CF=BD=5,
四邊形ADEF 是正方形,
![]()
AD=DE,∠ADE=
,
BC⊥CF, EM⊥BD, EN⊥CF,
四邊形CMEN是矩形,
NE=CM,EM=CN,
∠AHD=∠ADC=∠EMD=
,
∠ADH+∠EDM=∠EDM+∠DEM=![]()
∠ADH=∠DEM ,
在ΔADH與ΔDEM中,
∠ADH=∠DEM ,AD=DE, ∠AHD=∠DME
ΔADH≌ΔDEM(AAS),
EM=DH=3 , DM=AH=2,
CN=EM=3, EN=CM=3 ,
在ΔFNE與ΔDME中,
FE=DE,NE=EM,∠FNE=∠DME=![]()
ΔFNE≌ΔDMEZ,FN= DM=2
CF=CN+ DM=5
∠ABC=45 ,
∠BGC=45 ,
ΔBCG是等腰直角三角形,
CG=BC=4,
GN=1,
EG=
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品零售店為食品廠(chǎng)代銷(xiāo)一種面包,未售出的面包可以退回廠(chǎng)家.經(jīng)統(tǒng)計(jì)銷(xiāo)售情況發(fā)現(xiàn),當(dāng)這種面包的銷(xiāo)售單價(jià)為7角時(shí),每天賣(mài)出160個(gè).在此基礎(chǔ)上.單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣(mài)出20個(gè)面包.設(shè)這種面包的銷(xiāo)售單價(jià)為x角(每個(gè)面包的成本是5角).零售店每天銷(xiāo)售這種面包的利潤(rùn)為y角.
(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤(rùn)與賣(mài)出的面包個(gè)數(shù);
(2)求x與y之間的函數(shù)關(guān)系式:
(3)當(dāng)這種面包的銷(xiāo)售單價(jià)定為多少時(shí),該零售店每天銷(xiāo)售這種面包獲得的利潤(rùn)最大?最大利潤(rùn)為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,∠BAD的平分線(xiàn)交直線(xiàn)BC于點(diǎn)E,交直線(xiàn)DC于點(diǎn)F.
(1)在圖1中說(shuō)明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),求∠BDG的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為1,點(diǎn)E是BC邊上一動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)B、C重合),以線(xiàn)段DE為邊長(zhǎng),作正方形DEFG,使得點(diǎn)F、G落在直線(xiàn)DE的下方,連接AF、BF.當(dāng)△ABF為等腰三角形時(shí),BE的長(zhǎng)為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,過(guò)B點(diǎn)作BM⊥AC于點(diǎn)E,交CD于點(diǎn)M,過(guò)D點(diǎn)作DN⊥AC于點(diǎn)F,交AB于點(diǎn)N.
(1)求證:四邊形BMDN是平行四邊形;
(2)已知AF=12,EM=5,求AN的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)古代數(shù)學(xué)家劉徽發(fā)展了“重差術(shù)”,用于測(cè)量不可到達(dá)的物體的高度,比如,通過(guò)下列步驟可測(cè)量山的高度PQ(如圖):
(1)測(cè)量者在水平線(xiàn)上的A處豎立一根竹竿,沿射線(xiàn)QA方向走到M處,測(cè)得山頂P、竹竿頂端B及M在一條直線(xiàn)上;
(2)將該竹竿豎立在射線(xiàn)QA上的C處,沿原方向繼續(xù)走到N處,測(cè)得山頂P、竹竿頂端D及N在一條直線(xiàn)上;
(3)設(shè)竹竿與AM、CN的長(zhǎng)分別為
、a1、a2,可得公式:PQ=
+
.則上述公式中,d表示的是( )
![]()
A. QA的長(zhǎng) B. AC的長(zhǎng) C. MN的長(zhǎng) D. QC的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線(xiàn)AC、BD交于點(diǎn)O,AE平分∠BAD交BC于點(diǎn)E,且∠ADC=60°,AB=
BC,連接OE.下列結(jié)論:①∠CAD=30°;②SABCD=ABAC;③OB=AB;④OE=
BC,成立的個(gè)數(shù)有( )
![]()
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,直線(xiàn)AB的函數(shù)解析式為y=-2x+8,與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.
![]()
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)若點(diǎn)P(m,n)為線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn)(與A、B不重合),作PE⊥x軸于點(diǎn)E,PF⊥y軸于點(diǎn)F,連接EF,若△PEF的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并寫(xiě)出m的取值范圍;
(3)以上(2)中的函數(shù)圖象是一條直線(xiàn)嗎?請(qǐng)嘗試作圖驗(yàn)證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,在平面內(nèi),如果一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一定的角度后能與自身重合,那么就稱(chēng)這個(gè)圖形是旋轉(zhuǎn)對(duì)稱(chēng)圖形,轉(zhuǎn)的這個(gè)角稱(chēng)為這個(gè)圖形的一個(gè)旋轉(zhuǎn)角.例如,正方形繞著它的對(duì)角線(xiàn)的交點(diǎn)旋轉(zhuǎn)
后能與自身重合所以正方形是旋轉(zhuǎn)對(duì)稱(chēng)圖形,它有一個(gè)旋轉(zhuǎn)角為
.
![]()
判斷下列說(shuō)法是否正確(在相應(yīng)橫線(xiàn)里填上“對(duì)”或“錯(cuò)”)
①正五邊形是旋轉(zhuǎn)對(duì)稱(chēng)圖形,它有一個(gè)旋轉(zhuǎn)角為
.________
②長(zhǎng)方形是旋轉(zhuǎn)對(duì)稱(chēng)圖形,它有一個(gè)旋轉(zhuǎn)角為
.________
填空:下列圖形中時(shí)旋轉(zhuǎn)對(duì)稱(chēng)圖形,且有一個(gè)旋轉(zhuǎn)角為
的是________.(寫(xiě)出所有正確結(jié)論的序號(hào))
①正三角形②正方形③正六邊形④正八邊形
寫(xiě)出兩個(gè)多邊形,它們都是旋轉(zhuǎn)對(duì)稱(chēng)圖形,都有一個(gè)旋轉(zhuǎn)角為
,其中一個(gè)是軸對(duì)稱(chēng)圖形,但不是中心對(duì)稱(chēng)圖形;另一個(gè)既是軸對(duì)稱(chēng)圖形,又是中心對(duì)稱(chēng)圖形.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com