如圖,在□ABCD中,E、F為BC上的兩點(diǎn),且 BE=CF,AF=DE.
求證:(1)△ABF≌△DCE;
(2)四邊形ABCD是矩形.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某中學(xué)食堂為學(xué)生提供了四種價(jià)格的午餐供其選擇,這四種價(jià)格分別是:A.3元,B.4元,C.5元,D.6元.為了解學(xué)社對(duì)四種午餐的購(gòu)買(mǎi)情況,學(xué)校隨機(jī)抽樣調(diào)查了甲、乙兩班學(xué)生某天購(gòu)買(mǎi)四種午餐的情況,依據(jù)統(tǒng)計(jì)數(shù)據(jù)制成如
下的統(tǒng)計(jì)圖表:
![]()
甲、乙兩班學(xué)生購(gòu)買(mǎi)四種午餐情況統(tǒng)計(jì)表
| A | B | C | D | |
| 甲 | 6 | 22 | 16 | 6 |
| 乙 | ? | 13 | 25 | 3 |
(1)求乙班學(xué)生人數(shù);
(2)求乙班購(gòu)買(mǎi)午餐費(fèi)用的中位數(shù);
(3)已知甲、乙兩班購(gòu)買(mǎi)午餐費(fèi)用的平均數(shù)均為4.44元,從平均數(shù)和眾數(shù)的角度分析,哪個(gè)班購(gòu)買(mǎi)的
餐價(jià)格較高;
(4)從這次接受調(diào)查的學(xué)生中,隨機(jī)抽查一人,恰好是購(gòu)買(mǎi)C種午餐的學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,拋物線 y=x2﹣x 與x軸交于O、A兩點(diǎn). 半徑為1的動(dòng)圓⊙P,圓心從O點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)A的方向移動(dòng); 半徑為2的動(dòng)圓⊙Q,圓心從A點(diǎn)出發(fā)沿拋物線向靠近點(diǎn)O的方向移動(dòng).兩圓同時(shí)出發(fā),且移動(dòng)速度相等, 當(dāng)運(yùn)動(dòng)到P、Q兩點(diǎn)重合時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P的橫坐標(biāo)為t.若⊙P與⊙Q相離,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
某校校園超市老板到批發(fā)中心選購(gòu)甲、乙兩種品牌的文具盒,乙品牌的進(jìn)貨單價(jià)是甲品牌進(jìn)貨單價(jià)的2倍,考慮各種因素,預(yù)計(jì)購(gòu)進(jìn)乙品牌文具盒的數(shù)量y(個(gè))與甲品牌文具盒的數(shù)量x(個(gè))之間的函數(shù)關(guān)系如圖所示.當(dāng)購(gòu)進(jìn)的甲、乙品牌的文具盒中,甲有120個(gè)時(shí),購(gòu)進(jìn)甲、乙品牌文具盒共需7200元.
(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)求甲、乙兩種品牌的文具盒進(jìn)貨單價(jià);
(3)若該超市每銷售1個(gè)甲種品牌的文具盒可獲利4元,每銷售1個(gè)乙種品牌的文具盒可獲利9元,根據(jù)學(xué)生需求,超市老板決定,準(zhǔn)備用不超過(guò)6300元購(gòu)進(jìn)甲、乙兩種品牌的文具盒,且這兩種品牌的文具盒全部售出后獲利不低于1795元,問(wèn)該超市有幾種進(jìn)貨方案?哪種方案能使獲利最大?最大獲利為多少元?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在下列條件中,能判斷AD∥BC的是( )
A.∠DAC=∠BCA B. ∠DCB+∠ABC=180°
C.∠ABD=∠BDC D. ∠BAC=∠ACD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知,四邊形ABCD是正方形,點(diǎn)P在直線BC上,點(diǎn)G在直線AD上(P、G
不與正方形頂點(diǎn)重合,且在CD的同側(cè)),PD=PG,DF⊥PG于點(diǎn)H,交直線AB于點(diǎn)F,
將線段PG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,連結(jié)EF.
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)G分別在線段BC與線段AD上時(shí).
①求證:DG=2PC;
②求證:四邊形PEFD是菱形;
(2)如圖2,當(dāng)點(diǎn)P與點(diǎn)G分別在線段BC與線段AD的延長(zhǎng)線上時(shí),請(qǐng)猜想四邊形PEFD
是怎樣的特殊四邊形,并證明你的猜想.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com