如圖,直角梯形OABC中,AB∥OC,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)C在x軸正半軸上,點(diǎn)B坐標(biāo)為(2,
),∠BCO=60°,OH⊥BC于點(diǎn)H.動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長度.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.![]()
(1)求OH的長;
(2)若△OPQ的面積為S(平方單位).求S與t之間的函數(shù)關(guān)系式.并求t為何值時(shí),△OPQ的面積最大,最大值是多少;
(3)設(shè)PQ與OB交于點(diǎn)M.①當(dāng)△OPM為等腰三角形時(shí),求(2)中S的值. ②探究線段OM長度的最大值是多少,直接寫出結(jié)論.
2
;
;![]()
解析試題分析:(1)∵AB∥OC
∴∠OAB=∠AOC=90°
在Rt△OAB中,AB=2,AO=2
∴OB=4,∠ABO=60°
∴∠BOC=60°而∠BCO=60°
∴△BOC為等邊三角形![]()
∴OH=OBcos30°=4×
=2
; 2分
(2)∵OP="OH-PH=2"
-t
∴Xp="OPcos30°=3-"
t Yp="OPsin30°="
- ![]()
∴S=
•OQ•Xp=
•t•(3-
t)
=
(o<t<2
)
當(dāng)t=
時(shí),S最大=
; 5分
(3)①若△OPM為等腰三角形,則:
(i)若OM=PM,∠MPO=∠MOP=∠POC
∴PQ∥OC
∴OQ=yp即t=
- ![]()
解得:t=
此時(shí)S=![]()
(ii)若OP=OM,∠OPM=∠OMP=75°∴∠OQP=45°
過P點(diǎn)作PE⊥OA,垂足為E,則有:EQ=EP
即t-(
-
t)="3-"
t
解得:t=2
此時(shí)S=
(iii)若OP=PM,∠POM=∠PMO=∠AOB∴PQ∥OA
此時(shí)Q在AB上,不滿足題意. 10分
②線段PM長的最大值為
. 12分
考點(diǎn):二次函數(shù)的綜合題
點(diǎn)評:此題將用待定系數(shù)法求二次函數(shù)解析式、動(dòng)點(diǎn)問題和最小值問題相結(jié)合,有較大的思維
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| 1 |
| 4 |
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| k |
| x |
| BF |
| OA |
| 2 |
| 3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| k | x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 1 |
| 4 |
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 2 |
| 2 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com