【題目】如圖,在Rt△ABC中,∠ACB=90°,O是線段BC上一點(diǎn),以O為圓心,OC為半徑作⊙O,AB與⊙O相切于點(diǎn)F,直線AO交⊙O于點(diǎn)E,D.
(1)求證:AO是△ABC的角平分線;
(2)若tan∠D=
,求
的值;
(3)如圖2,在(2)條件下,連接CF交AD于點(diǎn)G,⊙O的半徑為3,求CF的長(zhǎng).
![]()
【答案】(1)證明見(jiàn)解析;(2)
;(3)
.
【解析】
(1)連接OF,可得OF⊥AB,由∠ACB=90°,OC=OF,可得出結(jié)論;
(2)連接CE,先求證∠ACE=∠ODC,然后可知△ACE∽△ADC,所以
,結(jié)合tan∠D=
=
,即可得到結(jié)論;
(3)連接CF交AD于點(diǎn)M,由(2)可知,AC2=AEAD,先求出AE,AC的長(zhǎng),則AO可求出,證△CMO∽△ACO,可得OC2=OMOA,求出OM,CM,結(jié)合CF=2CM,即可求解.
(1)如圖1,連接OF,
∵AB與⊙O相切于點(diǎn)F,
∴OF⊥AB,
∵∠ACB=90°,OC=OF,
∴AO是△ABC的角平分線;
(2)如圖2,連接CE,
∵ED是⊙O的直徑,
∴∠ECD=90°,
∴∠ECO+∠OCD=90°,
∵∠ACB=90°,
∴∠ACE+∠ECO=90°,
∴∠ACE=∠OCD,
∵OC=OD,
∴∠OCD=∠ODC,
∴∠ACE=∠ODC,
∵∠CAE=∠CAE,
∴△ACE∽△ADC,
∴
,
∵tan∠D=
,
∴
=
,
∴
=
;
(3)由(2)可知:
=
,
∴設(shè)AE=x,AC=2x,
∵△ACE∽△ADC,
∴
,
∴AC2=AEAD,
∴(2x)2=x(x+6),
解得:x=2或x=0(不合題意,舍去),
∴AE=2
∴AO=AE+OE=2+3=5,
如圖3,連接CF交AD于點(diǎn)M,
∵AC,AF是⊙O的切線,
∴AC=AF,∠CAO=∠OAF,
∴CF⊥AO,
∴∠ACO=∠CMO=90°,
∵∠COM=∠AOC,
∴△CMO∽△ACO,
∴
,
∴OC2=OMOA,
∴OM=
,
∴CM=
,
∴CF=2CM=
.
![]()
![]()
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某小區(qū)在一塊長(zhǎng)為16m,寬為9m的矩形空地上新修三條寬度相同的小路,其中一條和矩形的一邊平行,另外兩條和矩形的另一邊平行,空地剩下的部分種植花草,使得花草區(qū)域占地面積為120m2.設(shè)小路的寬度為xm,則下列方程:
①(16﹣2x)(9﹣x)=120
②16×9﹣9×2x﹣(16﹣2x)x=120
③16×9﹣9×2x﹣16x+x2=120,
其中正確的是( 。
![]()
A.①B.②C.①②D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC 為等腰直角三角形,∠ACB=90°,點(diǎn) M 為 AB 邊的中點(diǎn),點(diǎn) N 為射線 AC 上一點(diǎn),連接 BN,過(guò)點(diǎn) C 作 CD⊥BN 于點(diǎn) D,連接 MD,作∠BNE=∠BNA,邊 EN 交射線 MD 于點(diǎn) E,若 AB=20
,MD=14
,則 NE 的長(zhǎng)為___.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,所有正三角形的一邊平行于
軸,一頂點(diǎn)在
軸上,從內(nèi)到外,它們的邊長(zhǎng)依次為2,4,6,8,…,頂點(diǎn)依次用
表示,其中
與
軸、底邊
與
與
、…均相距一個(gè)單位,則頂點(diǎn)
的坐標(biāo)是__________,
的坐標(biāo)是__________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BP平分∠ABC,AP⊥BP,垂足為P,連接CP,若三角形△ABC內(nèi)有一點(diǎn)M,則點(diǎn)M落在△BPC內(nèi)(包括邊界)的概率為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=2
,∠BAC=120°,點(diǎn)D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CA=CB,∠ACB=90°,AB=2,點(diǎn)D為AB的中點(diǎn),以點(diǎn)D為圓心作圓,半圓恰好經(jīng)過(guò)△ABC的直角頂點(diǎn)C,以點(diǎn)D為頂點(diǎn),作∠EDF=90°,與半圓交于點(diǎn)E、F,則圖中陰影部分的面積是_______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在扇形
中,
,
,點(diǎn)
在
上,
,點(diǎn)
為
的中點(diǎn),點(diǎn)
為弧
上的動(dòng)點(diǎn),
與
的交點(diǎn)為
.
![]()
(1)當(dāng)四邊形
的面積
最大時(shí),求
;
(2)求
的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2020的寒假是一個(gè)特殊的假期.由于“新型冠狀肺炎病毒”影響,學(xué)校的開(kāi)學(xué)日期不斷延后,在這期間某中學(xué)在學(xué)校微信公眾號(hào)上積極鼓勵(lì)學(xué)生靜在家中沉下心來(lái)參加“靜讀名著”活動(dòng),活動(dòng)以讀名著的本書(shū)多少設(shè)為A,B,C,D,E五個(gè)等級(jí),(本數(shù)依次為5,4,3,2,1),該校八(3)班全體學(xué)生參加了這次靜在家中沉下心來(lái)讀名著活動(dòng),芳芳同學(xué)通過(guò)調(diào)查并將這次讀書(shū)閱讀本數(shù)的結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)該校八(3)班共有______學(xué)生;
(2)扇形統(tǒng)計(jì)圖中B等級(jí)所對(duì)應(yīng)扇形的圓心角等于______度;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該校有學(xué)生2500人讀名著的本書(shū)在B、C級(jí)的人數(shù)一共有多少人?
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com