【題目】一副三角尺(分別含45°,45°,90°和30°,60°,90°)按如圖所示擺放在量角器上,邊PD與量角器0°刻度線重合,邊AP與量角器180°刻度線重合,將三角尺ABP繞量角器中心點(diǎn)P以每秒10°的速度順時(shí)針旋轉(zhuǎn),當(dāng)邊PB與0°刻度線重合時(shí)停止運(yùn)動(dòng),設(shè)三角尺ABP的運(yùn)動(dòng)時(shí)間為t.
(1)當(dāng)t=5時(shí),邊PB經(jīng)過(guò)的量角器刻度線對(duì)應(yīng)的度數(shù)是 度:
(2)若在三角尺ABP開(kāi)始旋轉(zhuǎn)的同時(shí),三角尺PCD也繞點(diǎn)P以每秒2°的速度逆時(shí)針旋轉(zhuǎn),當(dāng)三角尺ABP停止旋轉(zhuǎn)時(shí),三角尺PCD也停止旋轉(zhuǎn).
①當(dāng)t為何值時(shí),邊PB平分∠CPD;
②在旋轉(zhuǎn)過(guò)程中,是否存在某一時(shí)刻使∠BPD=2∠APC,若存在,請(qǐng)直接寫(xiě)出t的值;若不存在,請(qǐng)說(shuō)明理由.
![]()
【答案】(1)
;(2)①
秒;②
秒
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)即可計(jì)算得出結(jié)論;
(2)由旋轉(zhuǎn)知,
的旋轉(zhuǎn)角為
,
的旋轉(zhuǎn)角為
,
①根據(jù)PB平分∠CPD和平角的定義列出方程即可計(jì)算得出;
②分PA在PC左側(cè)和右側(cè)兩種情況表示出
,根據(jù)已知建立方程即可解得結(jié)論.
(1)當(dāng)
秒時(shí),
旋轉(zhuǎn)了:![]()
∵
是等腰直角三角形,∴
,
此時(shí),邊
經(jīng)過(guò)的量角器刻度線對(duì)應(yīng)的度數(shù)是:
或![]()
∴邊
經(jīng)過(guò)的量角器刻度線對(duì)應(yīng)的度數(shù)是:![]()
(2)①由旋轉(zhuǎn)知,
的旋轉(zhuǎn)角為
,
的旋轉(zhuǎn)角為
,
∴邊
旋轉(zhuǎn)的角度為:
;邊
旋轉(zhuǎn)的角度為:
;
∴依題意得:
,即:![]()
∴
秒;
②當(dāng)PA在PC左側(cè)時(shí),由旋轉(zhuǎn)知:
![]()
![]()
根據(jù)題意:∠BPD=2∠APC,
得:
,即:![]()
∴
秒;
當(dāng)PA在PC右側(cè)時(shí),由旋轉(zhuǎn)知:
![]()
![]()
根據(jù)題意:∠BPD=2∠APC,
得:
,即:![]()
∴
秒;
綜上:
秒,∠BPD=2∠APC
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解全校2400名學(xué)生到校上學(xué)的方式,在全校隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查.問(wèn)卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項(xiàng),且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖(均不完整).
(1)這次調(diào)查中,一共抽取了多少名學(xué)生?
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)估計(jì)全校所有學(xué)生中有多少人乘坐公交車(chē)上學(xué).
![]()
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:(1)分解因式:m2(x﹣y)+4n2(y﹣x);
(2)解不等式組
,并把解集在數(shù)軸上表示出來(lái);
(3)先化簡(jiǎn),再求解,
,其中x=
﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明研究二次函數(shù)
(
為常數(shù))性質(zhì)時(shí)有如下結(jié)論:①該二次函數(shù)圖象的頂點(diǎn)始終在平行于x軸的直線上;②該二次函數(shù)圖象的頂點(diǎn)與x軸的兩個(gè)交點(diǎn)構(gòu)成等腰直角三角形;③當(dāng)
時(shí),y隨x的增大而增大,則m的取值范圍為
;④點(diǎn)
與點(diǎn)
在函數(shù)圖象上,若
,
,則
.其中正確結(jié)論的個(gè)數(shù)為( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市計(jì)劃購(gòu)進(jìn)甲、乙兩種型號(hào)的節(jié)能燈共1000只,這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:
進(jìn)價(jià)(元/只) | 售價(jià)(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
(1)如果進(jìn)貨款恰好為37000元,那么可以購(gòu)進(jìn)甲型節(jié)能燈多少只?
(2)超市為慶祝元旦進(jìn)行大促銷(xiāo)活動(dòng),決定對(duì)乙型節(jié)能燈進(jìn)行打折銷(xiāo)售,要求全部售完后,乙型節(jié)能燈的利潤(rùn)率為20%,請(qǐng)問(wèn)乙型節(jié)能燈需打幾折?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:
為直線
上的一點(diǎn),以
為觀察中心,射線
表示正北方向,
表示正東方向(即
),射線
,射線
的方向如各圖所示.
(1)如圖1所示,當(dāng)
時(shí):
①若
,則射線
的方向是 .
②
與
的關(guān)系為 ,
③
與
的關(guān)系為 .
![]()
(2)若將射線
,射線
繞點(diǎn)
旋轉(zhuǎn)至圖
的位置,另一條射線
恰好平分
,旋轉(zhuǎn)中始終保持
.
①若
,則
度 .
②若
,則
(用含
的代數(shù)式表示).
(3)若將射線
,射線
繞點(diǎn)
旋轉(zhuǎn)至圖
的位置,射線
仍然平分
,旋轉(zhuǎn)中始終保持
,則
與
之間存在怎樣的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E分別在AC,BC上,且∠CDE=∠B,將△CDE 沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處,若AC=8,AB=10,則CD的長(zhǎng)為____.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,一次函數(shù)
的圖象
與正比例函數(shù)的圖象
交于點(diǎn)
,一次函數(shù)
的圖象為
,且
,
,
能?chē)扇切,則在下列四個(gè)數(shù)中,
的值能取的是( 。
![]()
A. ﹣2B. 1C. 2D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)
、
、
、
分別是四邊形
邊
、
、
、
的中點(diǎn).則下列說(shuō)法:①若
,則四邊形
為矩形;②若
,則四邊形
為菱形;③若四邊形
是平行四邊形,則
與
互相平分;④若四邊形
是正方形,則
與
互相垂直且相等.其中正確的個(gè)數(shù)是( )
![]()
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com