【題目】如圖1,AB為半圓O的直徑,半徑OP⊥AB,過(guò)劣弧AP上一點(diǎn)D作DC⊥AB于點(diǎn)C.連接DB,交OP于點(diǎn)E,∠DBA=22.5°.
⑴ 若OC=2,則AC的長(zhǎng)為 ;
⑵ 試寫(xiě)出AC與PE之間的數(shù)量關(guān)系,并說(shuō)明理由;
⑶ 連接AD并延長(zhǎng),交OP的延長(zhǎng)線于點(diǎn)G,設(shè)DC=x,GP=y,請(qǐng)求出x與y之間的等量關(guān)系式. (請(qǐng)先補(bǔ)全圖形,再解答)
![]()
【答案】⑴
;⑵ 見(jiàn)解析;⑶ y=![]()
【解析】
(1)如圖,連接OD,則有∠AOD=45°,所以△DOC為等腰直角三角形,又OC=2,所以DO=AO=2
,故可求出AC的長(zhǎng);
(2)連接AD,DP,過(guò)點(diǎn)D作DF⊥OP,垂足為點(diǎn)F. 證AC=PF或AC=EF ,證DP=DE
證PF=EF=
,故可證出PE=2AC ;
(3)首先求出
,再求AB=
,再證△DGE≌△DBA,得GE=AB=
,由PE=2AC得PE=2
,再根據(jù)GP=GE-PE可求結(jié)論.
(1)連接OD,如圖,
![]()
∵∠B=22.5°,
∴∠DOC=45°,
∵DC⊥AB
∴△DOC為等腰直角三角形,
∵OC=2,
∴OD=2
,
∴AO=2
,
∴AC=AO-OC=
.
⑵ 連接AD,DP,過(guò)點(diǎn)D作DF⊥OP,垂足為點(diǎn)F.
∵OP⊥AB,
∴∠POD=∠DOC=45°,
∴AD=PD,
∵△DOC為等腰直角三角形,
∴DC=CO,
易證DF=CO,
∴DC=DF,
∴Rt△DAC≌Rt△DPF,
∴PF=AC,
∵DO=AO,∠DOA=45°
∴∠DAC=67.5°
∴∠DPE=67.5°,
∵OD=OB,∠B=22.5°,
∴∠ODE=22.5°
∴∠DEP=22.5°+45°=67.5°
∴∠DEP=∠DPE
∴PF=EF=
∴PE=2AC
(3)如圖2,由∠DCO=90°,∠DOC=45°得
∴ AB=2OD=
∵AB是直徑,
∴∠ADB=∠EDG=90°,
由(2)得AD=ED,∠DEG=∠DAC
∴△DGE≌△DBA
∴ GE=AB=
∵ PE=2AC
∴ PE=2
∴ GP=GE-PE=
即:y=![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形ABOC的頂點(diǎn)B,C在反比例函數(shù)y=
(x>O)的圖象上,點(diǎn)A在反比例函數(shù)y=
(k>O)的圖象上,若點(diǎn)B的坐標(biāo)為(1,2),∠OBC=90°,則k的值為( )
![]()
A.
B.3 C.5 D.12.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=
x2+
x+4與x軸相交于點(diǎn)A、B與y軸相交于點(diǎn)C,拋物線的對(duì)稱軸與x軸相交于點(diǎn)M,P是拋物線在x軸下方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上).分別過(guò)點(diǎn)A、B作直線CP的垂線,垂足分別為D、E,連接點(diǎn)MD、ME.
(1)寫(xiě)出點(diǎn)A,B的坐標(biāo), 并證明△MDE是等腰三角形;
(2)△MDE能否為等腰直角三角形?若能,求此時(shí)點(diǎn)的坐標(biāo);若不能,說(shuō)明理由;
(3)若將“P是拋物線在x軸下方的一個(gè)動(dòng)點(diǎn)(點(diǎn)P、M、C不在同一條直線上)”改為“P是拋物線在x軸上方的一個(gè)動(dòng)點(diǎn)”,其他條件不變,△MDE能否為等腰直角三角形?若能求此時(shí)點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果);若不能,說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線y=x2-2mx-3m
(1)當(dāng)m=1時(shí),
①拋物線的對(duì)稱軸為直線______,
②拋物線上一點(diǎn)P到x軸的距離為4,求點(diǎn)P的坐標(biāo)
③當(dāng)n≤x≤
時(shí),函數(shù)值y的取值范圍是-
≤y≤2-n,求n的值
(2)設(shè)拋物線y=x2-2mx-3m在2m-1≤x≤2m+1上最低點(diǎn)的縱坐標(biāo)為y0,直接寫(xiě)出y0與m之間的函數(shù)關(guān)系式及m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著交通道路的不斷完善,帶動(dòng)了旅游業(yè)的發(fā)展,某市某旅游景區(qū)有A、B、C、D、E等著名景點(diǎn),該市旅游部門(mén)統(tǒng)計(jì)繪制出2018年“十·一”長(zhǎng)假期間旅游情況統(tǒng)計(jì)圖,根據(jù)以下信息解答下列問(wèn)題:
![]()
⑴ 2018年“十·一”期間,該市此旅游景區(qū)共接待游客 萬(wàn)人,扇形統(tǒng)計(jì)圖中A景點(diǎn)所對(duì)應(yīng)的圓心角的度數(shù)是 ;
⑵ 補(bǔ)全條形統(tǒng)計(jì)圖;
⑶ 根據(jù)近幾年到該市旅游人數(shù)增長(zhǎng)趨勢(shì),預(yù)計(jì)2019年“十·一”節(jié)將有80萬(wàn)游客選擇該市旅游,請(qǐng)估計(jì)有多少萬(wàn)人會(huì)選擇去E景點(diǎn)旅游?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線![]()
過(guò)點(diǎn)
,頂點(diǎn)為M點(diǎn).
![]()
(1)求該拋物線的解析式;
(2)試判斷拋物線上是否存在一點(diǎn)P,使∠POM=90.若不存在,說(shuō)明理由;若存在,求出P點(diǎn)的坐標(biāo);
(3)試判斷拋物線上是否存在一點(diǎn)K,使∠OMK=90,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉?chǎng)購(gòu)物的支付方式更加多樣、便捷,在一次購(gòu)物中,張華和李紅都想從“微信”、“支付寶”、“銀行卡”、“現(xiàn)金”四種支付方式中選一種方式進(jìn)行支付.
(1)張華用“微信”支付的概率是______.
(2)請(qǐng)用畫(huà)樹(shù)狀圖或列表法求出兩人恰好選擇同一種支付方式的概率.(其中“微信”、“支付寶”、“銀行卡”、“現(xiàn)金”分別用字母“A”“B”“C”“D”代替)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知拋物線y=x2﹣2ax+b的頂點(diǎn)在x軸上,P(x1,m),Q(x2,m)(x1<x2)是此拋物線上的兩點(diǎn).
(1)若a=1.
①當(dāng)m=b時(shí),求x1,x2的值;
②將拋物線沿y軸平移,使得它與x軸的兩個(gè)交點(diǎn)間的距離為4,試描述出這一變化過(guò)程;
(2)若存在實(shí)數(shù)c,使得x1≤c﹣1,且x2≥c+7成立,則m的取值范圍是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰Rt△ABC中,∠BAC=90°,BC=2,點(diǎn)P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PBC=∠PCA,則線段AP長(zhǎng)的最小值為( 。
![]()
A.0.5B.
﹣1C.2﹣
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com