欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

7.在等腰△ABC中,AB=AC=2,∠BAC=120°,AD⊥BC于D,點O、點P分別在射線AD、BA上的運動,且保證∠OCP=60°,連接OP.
(1)當點O運動到D點時,如圖一,此時AP=AD,△OPC是什么三角形.
(2)當點O在射線AD其它地方運動時,△OPC還滿足(1)的結論嗎?請用利用圖二說明理由.
(3)令AO=x,AP=y,請直接寫出y關于x的函數(shù)表達式,以及x的取值范圍.

分析 (1)根據(jù)等腰三角形的性質(zhì)得到∠B=∠ACB=30°,求得∠ACP=30°,根據(jù)全等三角形的性質(zhì)即可得到結論;
(2)過C作CE⊥AP于E,根據(jù)等邊三角形的性質(zhì)得到CD=CE,根據(jù)全等三角形的性質(zhì)得到OC=OP,由等邊三角形的判定即可得到結論;
(3)在AB上找到Q點使得AQ=OA,則△AOQ為等邊三角形,根據(jù)求得解實現(xiàn)的性質(zhì)得到PA=BQ,求得AC=AO+AP,即可得到結論.

解答 解:(1)∵AB=AC=2,∠BAC=120°,
∴∠B=∠ACB=30°,
∵∠OCP=60°,
∴∠ACP=30°,
∵∠CAP=180°-∠BAC=60°,
∵AD⊥BC,
∴∠DAC=60°,
在△ADC與△APC中,$\left\{\begin{array}{l}{∠PAC=∠DAC}\\{AC=AC}\\{∠ACD=∠ACP}\end{array}\right.$,
∴△ACD≌△ACP,
∴CD=CP,
∴△PCO是等邊三角形;
故答案為:AD;
(2)△OPC還滿足(1)的結論,
理由:過C作CE⊥AP于E,
∵∠CAD=∠EAC=60°,
AD⊥CD,
∴CD=CE,
∴∠DCE=60°,
∴∠OCE=∠PCE,
在△OCD與△PCE中,$\left\{\begin{array}{l}{∠PEC=∠ODC=90°}\\{∠OCD=∠PCE}\\{CD=CE}\end{array}\right.$,
∴△OCD≌△PCE,
∴OC=OP,
∴△OPC是等邊三角形;
(3)在AB上找到Q點使得AQ=OA,則△AOQ為等邊三角形,
則∠BQO=∠PAO=120°,
在△BQO和△PAO中,$\left\{\begin{array}{l}{∠BQO=∠PAO}\\{∠ABO=∠APO}\\{OB=OP}\end{array}\right.$,
∴△BQO≌△PAO(AAS),
∴PA=BQ,
∵AB=BQ+AQ,
∴AC=AO+AP,
∵AO=x,AP=y,
∴y=-x+2,(0<x<2);

點評 本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質(zhì),本題中求證△BQO≌△PAO是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

17.化簡:
(1)x(x-1)+2x(x+1)-3x(2x-5)
(2)(x+1)2-(x+2)(x-2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

18.一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā)相向而行,并以各自的速度勻速行駛.1.5小時后兩車相距70km;2小時后兩車相遇.相遇時快車比慢車多行駛40km.
(1)甲乙兩地之間相距280km;
(2)求快車和慢車行駛的速度;
(3)若快車到達乙地后立刻返回甲地,慢車到達甲地后停止行駛,快車出發(fā)多長時間,兩車相距35km?.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

15.比較大。63°27′>63.27°(填“>”或“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.如圖1,已知拋物線y=-x2-2x+a(a≠0)與y軸相交于A點,頂點為M,直線y=$\frac{1}{2}$x-a分別與x軸、y軸相交于B,C兩點,并且與直線MA相交于N點.
(1)若直線BC和拋物線有兩個不同交點,求a的取值范圍,并用a表示交點M,A的坐標;
(2)如圖2,將△NAC沿著y軸翻轉(zhuǎn),若點N的對稱點為P,AP與拋物線的對稱軸相交于點D,連接CD.當a=$\frac{9}{4}$時,判斷點P是否落在在拋物線上,并求△PCD的面積;
(3)在拋物線y=-x2-2x+a(a>0)上是否存在點Q,使得以Q,A,C,N為頂點的四邊形是平行四邊形?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.如圖所示,在三角形ABC中,G為BC上一動點,∠DBF=∠DEF,∠BDG=∠BGD,DG平分∠BDE.
(1)如圖①,當G點在BF上時,求證:BD∥EF;
(2)如圖②,當G在CF上時,連接GE,若∠DEG=3∠FEG,∠DGE=60°,則∠CGE的度數(shù)為45°;
(3)如圖③,在(1)的條件下,若DM平分∠BDG,交BC于點M,DN平分∠ADM,交BC于點N,若∠BND=15°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

19.若單項式6amb2與單項式-7abn是同類項,則m-n=-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.化簡:3(2x2y-3xy2)-(xy2-3x2y).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

17.-$\frac{2}{5}$的倒數(shù)是-$\frac{5}{2}$,相反數(shù)是$\frac{2}{5}$.

查看答案和解析>>

同步練習冊答案