【題目】如圖1,在直角坐標(biāo)系xoy中,直線l:y=kx+b交x軸,y軸于點(diǎn)E,F(xiàn),點(diǎn)B的坐標(biāo)是(2,2),過點(diǎn)B分別作x軸、y軸的垂線,垂足為A、C,點(diǎn)D是線段CO上的動點(diǎn),以BD為對稱軸,作與△BCD或軸對稱的△BC′D.![]()
(1)當(dāng)∠CBD=15°時,求點(diǎn)C′的坐標(biāo).
(2)當(dāng)圖1中的直線l經(jīng)過點(diǎn)A,且k=﹣
時(如圖2),求點(diǎn)D由C到O的運(yùn)動過程中,線段BC′掃過的圖形與△OAF重疊部分的面積.
(3)當(dāng)圖1中的直線l經(jīng)過點(diǎn)D,C′時(如圖3),以DE為對稱軸,作于△DOE或軸對稱的△DO′E,連結(jié)O′C,O′O,問是否存在點(diǎn)D,使得△DO′E與△CO′O相似?若存在,求出k、b的值;若不存在,請說明理由.
【答案】
(1)
解:∵△CBD≌△C′BD,
∴∠CBD=∠C′BD=15°,C′B=CB=2,
∴∠CBC′=30°,
如圖1,作C′H⊥BC于H,則C′H=1,HB=
,
∴CH=2﹣
,
∴點(diǎn)C′的坐標(biāo)為:(2﹣
,1)
![]()
(2)
解:如圖2,∵A(2,0),k=﹣
,
∴代入直線AF的解析式為:y=﹣
x+b,
∴b=
,
則直線AF的解析式為:y=﹣
x+
,
∴∠OAF=30°,∠BAF=60°,
∵在點(diǎn)D由C到O的運(yùn)動過程中,BC′掃過的圖形是扇形,
∴當(dāng)D與O重合時,點(diǎn)C′與A重合,
且BC′掃過的圖形與△OAF重合部分是弓形,
當(dāng)C′在直線y=﹣
x+
上時,BC′=BC=AB,
∴△ABC′是等邊三角形,這時∠ABC′=60°,
∴重疊部分的面積是:
﹣
×22=
π﹣ ![]()
![]()
(3)
解:如圖3,設(shè)OO′與DE交于點(diǎn)M,則O′M=OM,OO′⊥DE,
若△DO′E與△COO′相似,則△COO′必是Rt△,
在點(diǎn)D由C到O的運(yùn)動過程中,△COO′中顯然只能∠CO′O=90°,
∴CO′∥DE,
∴CD=OD=1,
∴b=1,
連接BE,由軸對稱性可知C′D=CD,BC′=BC=BA,
∠BC′E=∠BCD=∠BAE=90°,
在Rt△BAE和Rt△BC′E中
∵
,
∴Rt△BAE≌Rt△BC′E(HL),
∴AE=C′E,
∴DE=DC′+C′E=DC+AE,
設(shè)OE=x,則AE=2﹣x,
∴DE=DC+AE=3﹣x,
由勾股定理得:x2+1=(3﹣x)2,
解得:x=,
∵D(0,1),E(
,0),
∴
k+1=0,
解得:k=﹣
,
∴存在點(diǎn)D,使△DO′E與△COO′相似,這時k=﹣
,b=1.
![]()
【解析】(1)利用翻折變換的性質(zhì)得出∠CBD=∠C′BD=15°,C′B=CB=2,進(jìn)而得出CH的長,進(jìn)而得出答案;(2)首先求出直線AF的解析式,進(jìn)而得出當(dāng)D與O重合時,點(diǎn)C′與A重合,且BC′掃過的圖形與△OAF重合部分是弓形,求出即可;(3)根據(jù)題意得出△DO′E與△COO′相似,則△COO′必是Rt△,進(jìn)而得出Rt△BAE≌Rt△BC′E(HL),再利用勾股定理求出EO的長進(jìn)而得出答案.
【考點(diǎn)精析】通過靈活運(yùn)用確定一次函數(shù)的表達(dá)式和勾股定理的概念,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2即可以解答此題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD和CD分別平分△ABC的內(nèi)角∠EBA和外角∠ECA,BD交AC于F,連接AD.
![]()
(1)求證:∠BDC=
∠BAC;
(2)若AB=AC,請判斷△ABD的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,若AF=BF,求∠EBA的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=x2﹣3x+m,直線l:y=kx(k>0),當(dāng)k=1時,拋物線C與直線l只有一個公共點(diǎn).![]()
(1)求m的值;
(2)若直線l與拋物線C交于不同的兩點(diǎn)A,B,直線l與直線l1:y=﹣3x+b交于點(diǎn)P,且
+
=
,求b的值;
(3)在(2)的條件下,設(shè)直線l1與y軸交于點(diǎn)Q,問:是否在實數(shù)k使S△APQ=S△BPQ?若存在,求k的值,若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在
中
,
于點(diǎn)
,
于點(diǎn)
,
為
邊的中點(diǎn),連接
、
,則下列結(jié)論:①
;②
為等邊三角形.下面判斷正確是( )
![]()
A. ①正確 B. ②正確
C. ①②都正確 D. ①②都不正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中有四條線段AB、CD、EF、GH(線段端點(diǎn)在格點(diǎn)上),
⑴選取其中三條線段,使得這三條線段能圍成一個直角三角形.
答:選取的三條線段為 .
⑵只變動其中兩條線段的位置,在原圖中畫出一個滿足上題的直角三角形(頂點(diǎn)仍在格點(diǎn),并標(biāo)上必要的字母).
答:畫出的直角三角形為△ .
⑶所畫直角三角形的面積為 .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為等腰直角三角形,D為斜邊AB上任意一點(diǎn),(不與點(diǎn)A、B重合),連接CD,作EC⊥DC,且EC=DC,連接AE,則∠EAC為_______________度.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全球最大的關(guān)公塑像矗立在荊州古城東門外.如圖,張三同學(xué)在東門城墻上C處測得塑像底部B處的俯角為18°48′,測得塑像頂部A處的仰角為45°,點(diǎn)D在觀測點(diǎn)C正下方城墻底的地面上,若CD=10米,則此塑像的高AB約為米(參考數(shù)據(jù):tan78°12′≈4.8).![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在關(guān)于x的分式方程
①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n均為實數(shù),方程①的根為非負(fù)數(shù).
(1)求k的取值范圍;
(2)當(dāng)方程②有兩個整數(shù)根x1、x2 , k為整數(shù),且k=m+2,n=1時,求方程②的整數(shù)根;
(3)當(dāng)方程②有兩個實數(shù)根x1、x2 , 滿足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k為負(fù)整數(shù)時,試判斷|m|≤2是否成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com