分析 (1)根據(jù)點A、C的坐標求出AC的長,根據(jù)題意求出點B的坐標,利用待定系數(shù)法求出過點A,B的直線的函數(shù)表達式;
(2)過點B作BD⊥AB,交x軸于點D,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可;
(3)分PQ∥BD時和PQ⊥AD時兩種情況,根據(jù)相似三角形的性質(zhì)列出比例式,計算即可.
解答 解:(1)∵點A(-3,0),C(1,0),
∴AC=4,又BC=$\frac{3}{4}$AC,
∴BC=3,
∴B點坐標為(1,3),![]()
設過點A,B的直線的函數(shù)表達式為:y=kx+b,
則$\left\{\begin{array}{l}{-3k+b=0}\\{k+b=3}\end{array}\right.$,
解得,$\left\{\begin{array}{l}{k=\frac{3}{4}}\\{b=\frac{9}{4}}\end{array}\right.$,
∴直線AB的函數(shù)表達式為:y=$\frac{3}{4}$x+$\frac{9}{4}$;![]()
(2)如圖1,過點B作BD⊥AB,交x軸于點D,
∵∠A=∠A,∠ABD=∠ACB,
∴△ADB∽△ABC,
∴D點為所求,
∵△ADB∽△ABC,
∴$\frac{BC}{AC}=\frac{CD}{BC}$,即$\frac{3}{4}$=$\frac{CD}{3}$,
解得,CD=$\frac{9}{4}$,
∴$OD=OC+CD=\frac{13}{4}$,
∴點D的坐標為($\frac{13}{4}$,0);
(3)在Rt△ABC中,由勾股定理得AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=5,
如圖2,當PQ∥BD時,△APQ∽△ABD,![]()
則$\frac{m}{5}$=$\frac{3+\frac{13}{4}-m}{3+\frac{13}{4}}$,
解得,m=$\frac{25}{9}$,
如圖3,當PQ⊥AD時,△APQ∽△ADB,
則$\frac{m}{3+\frac{13}{4}}$=$\frac{3+\frac{13}{4}-m}{5}$,
解得,m=$\frac{125}{36}$,
所以若△APQ與△ADB相似時,m=$\frac{25}{9}$或$\frac{125}{36}$.
點評 本題考查的是相似三角形的判定和性質(zhì)、待定系數(shù)法求函數(shù)解析式,掌握相似三角形的判定定理和性質(zhì)定理、靈活運用分情況討論思想是解題的關(guān)鍵.
科目:初中數(shù)學 來源: 題型:選擇題
| A. | $\sqrt{1-c}$ | B. | $\sqrt{c-1}$ | C. | -$\sqrt{c-1}$ | D. | -$\sqrt{1-c}$ |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com