【題目】如圖,點(diǎn)
是等邊三角形
內(nèi)一點(diǎn),
將
繞點(diǎn)
.按順時(shí)針?lè)较蛐D(zhuǎn)
得
, 連接
.
(1)求證:
是等邊三角形;
(2)當(dāng)
時(shí), 試判斷
的形狀,并說(shuō)明理由;
(3)探究:當(dāng)
為多少度時(shí),
是等腰三角形.
![]()
【答案】(1)見(jiàn)解析;(2)
是直角三角形,理由見(jiàn)解析;(3)當(dāng)
的度數(shù)為
或
或
時(shí),
是等腰三角形.
【解析】
(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得到
,再根據(jù)旋轉(zhuǎn)角的度數(shù)得到∠OCD的度數(shù),根據(jù)等邊三角形的判定方法,即可證明.
(2)根據(jù)旋轉(zhuǎn)前后對(duì)應(yīng)的兩個(gè)三角形全等可得△BOC≌△ADC,利用全等三角形的性質(zhì)得到∠ADC=∠BOC=
,再利用△COD是等邊三角形得∠ODC=60°,于是可計(jì)算出∠ADO的度數(shù),再結(jié)合周角為360°,求出∠AOD的度數(shù),探究是否存在等腰直角三角形的情況,進(jìn)而判斷△AOD的形狀;
(3)需要分三種情況討論,即①要使AO=AD,需∠AOD=∠ADO;②要使OA=OD,需∠OAD=∠ADO;③要使OD=AD,需∠OAD=∠AOD;如對(duì)于①,∠AOD=190°-
,∠ADO=
-60°,再結(jié)合∠AOD=∠ADO建立
的方程,求出
的度數(shù),同理可以計(jì)算其他兩種情況.
(1)證明:由旋轉(zhuǎn)的性質(zhì)得:
,
![]()
是等邊三角形;
(2)當(dāng)
,即
°時(shí),
是直角三角形.理由如下:
由旋轉(zhuǎn)的性質(zhì)得:![]()
![]()
又是
等邊三角形,
![]()
![]()
即
是直角三角形;
(3)分三種情況:
①
時(shí),![]()
![]()
![]()
![]()
![]()
;
②
時(shí),![]()
![]()
![]()
![]()
;
③
時(shí),![]()
![]()
.
綜上所述:當(dāng)
的度數(shù)為
或
或
時(shí),
是等腰三角形.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位認(rèn)真開(kāi)展學(xué)習(xí)和實(shí)踐科學(xué)發(fā)展觀活動(dòng),在階段總結(jié)中提出對(duì)本單位今后的整改措施,并在征求職工對(duì)整改方案的滿意程度時(shí)進(jìn)行民主測(cè)評(píng),測(cè)評(píng)等級(jí)為:很滿意、較滿意、滿意、不滿意四個(gè)等級(jí).
![]()
(1)若測(cè)評(píng)后結(jié)果如扇形圖(圖①),且測(cè)試等級(jí)為很滿意、較滿意、滿意、不滿意的人數(shù)之比為2:5:4:1,則圖中a= ° ,β= °.
(2)若測(cè)試后部分統(tǒng)計(jì)結(jié)果如直方圖(圖②),請(qǐng)將直方圖補(bǔ)畫(huà)完整,并求出該單位職工總?cè)藬?shù)為 人.
(3)按上級(jí)要求,滿意度必須不少于95%方案才能通過(guò),否則,必須對(duì)方案進(jìn)行完善.若要使該方案完善后能獲得通過(guò),至少還需增加 人對(duì)該方案的測(cè)評(píng)等級(jí)達(dá)滿意(含滿意)以上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(a,0),(b,0)且
+|b-2|=0.
(1)求a、b的值;
(2)在y軸上是否存在點(diǎn)C,使三角形ABC的面積是12?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)已知點(diǎn)P是y軸正半軸上一點(diǎn),且到x軸的距離為3,若點(diǎn)P沿平行于x軸的負(fù)半軸方向以每秒1個(gè)單位長(zhǎng)度平移至點(diǎn)Q,當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),四邊形ABPQ的面積S為15個(gè)平方單位?寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo). ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】①
②
③x(x+1)-(x-1)(x+1).
④用簡(jiǎn)便方法計(jì)算:20192-2018×2020
⑤先化簡(jiǎn),再求值:當(dāng)x=﹣2,y=3時(shí),求代數(shù)式(y+3x)(3x-y)-(3y-x)(3y+x)的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn)(﹣1,0)和(3,0),與y軸交于點(diǎn)(0,﹣3)則此拋物線對(duì)此函數(shù)的表達(dá)式為( )![]()
A.y=x2+2x+3
B.y=x2﹣2x﹣3
C.y=x2﹣2x+3
D.y=x2+2x﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠B、∠D的兩邊分別平行.
(1)在圖1中, ∠B與∠D的數(shù)量關(guān)系是 ;
(2)在圖2中, ∠B與∠D的數(shù)量關(guān)系是 ;
(3)用一句話歸納的結(jié)論為
(4)應(yīng)用:若兩個(gè)角的兩邊分別互相平行,其中一個(gè)角比另一個(gè)角的2倍小30°,求著兩個(gè)角的度數(shù).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 ABCD 中,點(diǎn) E,F 分別在 AB,CD 上,且 AE=CF.
![]()
(1)求證:四邊形 AECF 是平行四邊形;
(2)直接寫(xiě)出 CE 與 AE 滿足 時(shí), AECF是矩形;
(3)直接寫(xiě)出 CE 與 AE 滿足 時(shí), AECF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,輪船甲位于碼頭O的正西方向A處,輪船乙位于碼頭O的正北方向C處,某一時(shí)刻,AC=18
km,且OA=OC.輪船甲自西向東勻速行駛,同時(shí)輪船乙沿正北方向勻速行駛,它們的速度分別為40km/h和30km/h,經(jīng)過(guò)0.2h,輪船甲行駛至B處,輪船乙行駛至D處,求此時(shí)B處距離D處多遠(yuǎn)?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形
中,
,點(diǎn)
在
上,且
,連接
,將矩形
沿直線
翻折,點(diǎn)
恰好落在
上的點(diǎn)
處,則
________
.
![]()
A.9B.8C.7D.5
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com