【題目】閱讀下面材料,完成后面題目.
0°-360°間的角的三角函數(shù)
在初中,我們學(xué)習(xí)過(guò)銳角的正弦、余弦、正切和余切四種三角函數(shù),即在圖1所示的直角三角形ABC,∠A是銳角,那么sinA=
,cosA=
,tanA=
,cotA=![]()
為了研究需要,我們?cè)購(gòu)牧硪粋(gè)角度來(lái)規(guī)定一個(gè)角的三角函數(shù)的意義:
設(shè)有一個(gè)角α,我們以它的頂點(diǎn)作為原點(diǎn),以它的始邊作為x軸的正半軸ox,建立直角坐標(biāo)系(圖2),在角α的終邊上任取一點(diǎn)P,它的橫坐標(biāo)是x,縱坐標(biāo)是y,點(diǎn)P和原點(diǎn)(0,0)的距離為r=
(r總是正的),然后把角α的三角函數(shù)規(guī)定為:sinα=
,cosα=
,tanα=
,cotα=![]()
![]()
我們知道,圖1的四個(gè)比值的大小與角A的大小有關(guān),而與直角三角形的大小無(wú)關(guān),同樣圖2中四個(gè)比值的大小也僅與角α的大小有關(guān),而與點(diǎn)P在角α的終邊位置無(wú)關(guān).
比較圖1與圖2,可以看出一個(gè)角的三角函數(shù)的意義的兩種規(guī)定實(shí)際上是一樣的,根據(jù)第二種定義回答下列問(wèn)題.
(1)若90°<α<180°,則角α的三角函數(shù)值sinα、cosα、tanα、cotα,其中取正值的是哪幾個(gè)?
(2)若角α的終邊與直線(xiàn)y=2x重合,求sinα+cosα的值.
(3)若角α是鈍角,其終邊上一點(diǎn)P(x,
),且cosα=
x,求tanα的值.
(4)若0°≤α≤90°,求sinα+cosα的取值范圍.
【答案】(1)sinα;(2)
或
;(3)
;(4)1≤sinα+cosα≤
.
【解析】
(1)由點(diǎn)P(x,y)在第二象限,推出x<0,y>0,根據(jù)sinα=
,cosα=
,tanα=
,cotα=
,即可判斷;
(2)分兩種情形討論即可解決問(wèn)題;
(3)如圖2中,作PE⊥x軸于E.想辦法求出OE的長(zhǎng),根據(jù)三角函數(shù)的定義即可解決問(wèn)題;
(4)當(dāng)α=0°或90°時(shí),得到sinα+cosα的最小值sinα+cosα=1,當(dāng)α=45°時(shí),得到sinα+cosα的最大值,sinα+cosα=
,由此即可解決問(wèn)題.
(1)∵點(diǎn)P(x,y)在第二象限,
∴x<0,y>0,
∵sinα=
,cosα=
,tanα=
,cotα=
,
∴sinα>0,cosα<0,tanα<0,cotα<0,
∴取取正值的是sinα.
(2)如圖1中,
![]()
①當(dāng)點(diǎn)P在第一象限時(shí),作PE⊥x軸于E.設(shè)OE=a,則PE=2a,OP=
a,
∴sinα+cosα=
.
②當(dāng)點(diǎn)P在第三象限時(shí),作PE⊥x軸于E.設(shè)OE=a,則PE=2a,OP=
a,
∴sinα+cosα=
.
綜上所述,sinα+cosα=
或
.
(3)如圖2中,作PE⊥x軸于E.
![]()
由題意PE=
,cosα=
,
∴OP=2
,
∴OE=
,
∴tanα=
.
(4)當(dāng)α=0°或90°時(shí),得到sinα+cosα的最小值sinα+cosα=1,
當(dāng)α=45°時(shí),得到sinα+cosα的最大值,sinα+cosα=
,
∴1≤sinα+cosα≤
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)解方程:3x(x﹣1)=2﹣2x;
(2)已知二次函數(shù)的圖象以A(﹣1,4)為頂點(diǎn)且過(guò)點(diǎn)B(2,﹣5),求該函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題探究:已知平行四邊形
的面積為
,
是
所在直線(xiàn)上一點(diǎn).
![]()
如圖
:當(dāng)點(diǎn)
與
重合時(shí),
________;
如圖
,當(dāng)點(diǎn)
與
與
均不重合時(shí),
________;
如圖
,當(dāng)點(diǎn)
在
(或
)的延長(zhǎng)線(xiàn)時(shí),
________.
拓展推廣:如圖
,平行四邊形
的面積為
,
、
分別為
、
延長(zhǎng)線(xiàn)上兩點(diǎn),連接
、
、
、
,求出圖中陰影部分的面積,并說(shuō)明理由.
實(shí)踐應(yīng)用:如圖是一平行四邊形綠地
,
、
分別平行于
、
,它們相交于點(diǎn)
,
,
,
,
,現(xiàn)進(jìn)行綠地改造,在綠地內(nèi)部作一個(gè)三角形區(qū)域
(連接
、
、
,圖中陰影部分)種植不同的花草,求出三角形區(qū)域的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點(diǎn)P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿(mǎn)足∠BPC=90°,則a的最大值是( )
![]()
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,過(guò)點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線(xiàn)段DE上一點(diǎn),且∠AFE=∠B
![]()
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6
,AF=4
,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,E,F(xiàn)分別是線(xiàn)段BC,AD的中點(diǎn),AB=2,AD=4,動(dòng)點(diǎn)P沿EC,CD,DF的路線(xiàn)由點(diǎn)E運(yùn)動(dòng)到點(diǎn)F,則△PAB的面積s是動(dòng)點(diǎn)P運(yùn)動(dòng)的路徑總長(zhǎng)x的函數(shù),這個(gè)函數(shù)的大致圖象可能是
![]()
![]()
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了了解男生的體能情況,規(guī)定參加測(cè)試的每名男生從“實(shí)心球”,“立定跳遠(yuǎn)”,“引體向上”,“耐久跑1000米”四個(gè)項(xiàng)目中隨機(jī)抽取一項(xiàng)作為測(cè)試項(xiàng)目.
(1)八年(1)班的25名男生積極參加,參加各項(xiàng)測(cè)試項(xiàng)目的統(tǒng)計(jì)結(jié)果如圖,參加“實(shí)心球”測(cè)試的男生人數(shù)是 人;
(2)八年(1)班有8名男生參加了“立定跳遠(yuǎn)”的測(cè)試,他們的成績(jī)(單位:分)如下:95,100,82,90,89,90,90,85
①“95,100,82,90,89,90,90,85”這組數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是 .
②小聰同學(xué)的成績(jī)是92分,他的成績(jī)?nèi)绾危?/span>
③如果將不低于90分的成績(jī)?cè)u(píng)為優(yōu)秀,請(qǐng)你估計(jì)八年級(jí)80名男生中“立定跳遠(yuǎn)”成績(jī)?yōu)閮?yōu)秀的學(xué)生約為多少人?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,O為直線(xiàn)AB上一點(diǎn),過(guò)點(diǎn)O作射線(xiàn)OC,
,將一直角三角板
的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線(xiàn)OA上,另一邊OM與OC都在直線(xiàn)AB的上方.
(1)將圖1中的三角板繞點(diǎn)O以每秒
的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周如圖2,經(jīng)過(guò)t秒后,ON落在OC邊上,則
______秒(直接寫(xiě)結(jié)果).
(2)如圖2,三角板繼續(xù)繞點(diǎn)O以每秒
的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)到起點(diǎn)OA上同時(shí)射線(xiàn)OC也繞O點(diǎn)以每秒
的速度沿逆時(shí)針?lè)较蛐D(zhuǎn)一周,
①當(dāng)OC轉(zhuǎn)動(dòng)9秒時(shí),求
的度數(shù).
②運(yùn)動(dòng)多少秒時(shí),
?請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com