【題目】如圖,在△ABC中,BC=2AB,BD為∠ABC的角平分線,∠ADB=45°,過點(diǎn)A作AE⊥BD于點(diǎn)E,若BE=
,則DE的長為__________
![]()
【答案】![]()
【解析】
延長AE交BC于F,過點(diǎn)F作FG∥BD交AC于G,利用ASA易證△ABE≌△FBE,可得AE=EF,AB=BF,進(jìn)而得到FG是△BDC的中位線,DE是△AFG的中位線,然后根據(jù)中位線的性質(zhì)列方程求解即可.
解:如圖,延長AE交BC于F,過點(diǎn)F作FG∥BD交AC于G,
∵BD為∠ABC的角平分線,AE⊥BD,
∴∠ABE=∠FBE,∠AEB=∠FEB=90°,
又∵BE=BE,
∴△ABE≌△FBE(ASA),
∴AE=EF,AB=BF,
∴BC=2AB=2BF,E為AF中點(diǎn),
∴F為BC中點(diǎn),
∵FG∥BD,
∴FG是△BDC的中位線,DE是△AFG的中位線,
∴FG=2DE,FG=
,
∴
,即
,
∴
,
故答案為:
.
![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知E,F(xiàn)分別為正方形ABCD的邊AB,BC的中點(diǎn),AF與DE交于點(diǎn)M,O為BD的中點(diǎn),則下列結(jié)論:
①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=
MF.其中正確結(jié)論的是( 。
![]()
A. ①③④ B. ②④⑤ C. ①③④⑤ D. ①③⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)分別為A(3,4)、B(1,1)、C(4,2).
(1)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到的△A1BC1,其中A、C分別和A1、C1對應(yīng).
(2)平移△ABC,使得A點(diǎn)落在x軸上,B點(diǎn)落在y軸上,畫出平移后的△A2B2C2,其中A、B、C分別和A2B2C2對應(yīng).
(3)填空:在(2)的條件下,設(shè)△ABC,△A2B2C2的外接圓的圓心分別為M、M2,則MM2= .
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
![]()
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過點(diǎn)E作GE∥AB,交線段AC的延長線于點(diǎn)G,AG=5CG,BH=3.求CG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明調(diào)查了班級里20位同學(xué)本學(xué)期購買課外書的花費(fèi)情況,并將結(jié)果繪制成了如圖的統(tǒng)計(jì)圖.在這20位同學(xué)中,本學(xué)期購買課外書的花費(fèi)的眾數(shù)和中位數(shù)分別是( 。
![]()
A. 50,50 B. 50,30 C. 80,50 D. 30,50
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在山坡坡腳C處測得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.
(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)
(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)
(測傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈
,tan63.5°≈2)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A1,A2,A3…都在x軸上,點(diǎn)B1,B2,B3…都在直線
上,△OA1B1,△B1A1A2,△B2B1A2,△B2A2A3,△B3B2A3…都是等腰直角三角形,且OA1=1,則點(diǎn)B2019的坐標(biāo)是_________________.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用無刻度的直尺繪圖.
![]()
(1)如圖1,在
中,AC為對角線,AC=BC,AE是△ABC的中線.畫出△ABC的高CH
(2)如圖2,在直角梯形
中,
,AC為對角線,AC=BC,畫出△ABC的高CH.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線l:y=
x+m交x軸于點(diǎn)A,二次函數(shù)y=ax2﹣3ax+c(a≠0,且a、c是常數(shù))的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,與直線l交于點(diǎn)D,已知CD與x軸平行,且S△ACD:S△ABD=3:5.
(1)求點(diǎn)A的坐標(biāo);
(2)求此二次函數(shù)的解析式;
(3)點(diǎn)P為直線l上一動點(diǎn),將線段AC繞點(diǎn)P順時(shí)針旋轉(zhuǎn)α°(0°<α°<360°)得到線段A'C'(點(diǎn)A,A'是對應(yīng)點(diǎn),點(diǎn)C,C'是對應(yīng)點(diǎn)).請問:是否存在這樣的點(diǎn)P,使得旋轉(zhuǎn)后點(diǎn)A'和點(diǎn)C'分別落在直線l和拋物線y=ax2﹣3ax+c的圖象上?若存在,請直接寫出點(diǎn)A'的坐標(biāo);若不存在,請說明理由.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com