【題目】教育部基礎(chǔ)教育司負(fù)責(zé)人解讀“2020新中考”時強調(diào)要注重學(xué)生分析與解決問題的能力,要增強學(xué)生的創(chuàng)新精神和綜合素質(zhì).王老師想嘗試改變教學(xué)方法,將以往教會學(xué)生做題改為引導(dǎo)學(xué)生會學(xué)習(xí).于是她在菱形的學(xué)習(xí)中,引導(dǎo)同學(xué)們解決菱形中的一個問題時,采用了以下過程(請解決王老師提出的問題):
![]()
先出示問題(1):如圖1,在等邊三角形
中,
為
上一點,
為
上一點,如果
,連接
、
,
、
相交于點
,求
的度數(shù).
通過學(xué)習(xí),王老師請同學(xué)們說說自己的收獲.小明說發(fā)現(xiàn)一個結(jié)論:在這個等邊三角形
中,只要滿足
,則
的度數(shù)就是一個定值,不會發(fā)生改變.緊接著王老師出示了問題(2):如圖2,在菱形
中,
,
為
上一點,
為
上一點,
,連接
、
,
、
相交于點
,如果
,
,求出菱形的邊長.
問題(3):通過以上的學(xué)習(xí)請寫出你得到的啟示(一條即可).
【答案】(1)
;(2)
;(3)答案不唯一,合理即可
【解析】
問題(1)根據(jù)
是等邊三角形證明
,得出
,再根據(jù)三角形外角性質(zhì)即可得證;
問題(2)作
交
于點
,根據(jù)四邊形
是菱形得出
,在
中利用三角函數(shù)即可求得
,
,最后根據(jù)勾股定理得出答案.
問題(3)從個人的積累和心得寫一句話即可.
問題(1)∵
是等邊三角形,
∴
,
.
∵
,
∴
,
∴
.
∵
,
∴
,
問題(2)如圖,作
交
于點
,
![]()
∵四邊形
是菱形,
∴
,
,
∴
是等邊三角形,
∴
.
由(1)可知
,
在
中,
,即
,
∴
,
,即
,
∴
.
在
中,
由勾股定理可得
,
∴
,
∴
,
∴菱形的邊長為
.
問題(3)如平時應(yīng)該注意基本圖形的積累,在學(xué)習(xí)過程中做個有心人等,言之有理即可.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,BC=10,AB⊥AC,點P從點B出發(fā)沿著B→A→C的路徑運動,同時點Q從點A出發(fā)沿著A→C→D的路徑以相同的速度運動,當(dāng)點P到達點C時,點Q隨之停止運動,設(shè)點P運動的路程為x,y=PQ2,下列圖象中大致反映y與x之間的函數(shù)關(guān)系的是( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.對角線相等的四邊形一定是矩形
B.任意擲一枚質(zhì)地均勻的硬幣10次,一定有5次正面向上
C.如果有一組數(shù)據(jù)為5,3,6,4,2,那么它的中位數(shù)是6
D.“用長分別為
、12cm、
的三條線段可以圍成三角形”這一事件是不可能事件
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由一些棱長都為1cm的小正方體組合成的簡單幾何體.
(1)該幾何體的表面積(含下底面)是______cm2;
(2)該幾何體的主視圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖.
(3)若使該幾何體主視圖、俯視圖不發(fā)生改變,最多還可以在幾何體上再堆放______個相同的小正方體.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一幢樓房AB背后有臺階CD,臺階每層高0.2米,且AC=17.2米,設(shè)太陽光線與水平地面的夾角為α,當(dāng)α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階MN上曬太陽.
![]()
(1)求樓房的高度約為多少米?(結(jié)果精確到0.1米)
(2)過了一會兒,當(dāng)α=45°時,小貓還能不能曬到太陽?請說明理由.(參考數(shù)據(jù):
≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2+bx﹣3經(jīng)過點A(1,0),頂點為點M.
(1)求拋物線的表達式及頂點M的坐標(biāo);
(2)求∠OAM的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,先研究下面三角形、四邊形、五邊形、六邊形…多邊形的邊數(shù)n及其對角線條數(shù)t的關(guān)系,再完成下面問題:
(1)若一個多邊形是七邊形,它的對角線條數(shù)為 ,n邊形的對角線條數(shù)為t= (用n表示).
(2)求正好65條對角線的多邊形是幾邊形.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com