【題目】如圖,直線y=﹣2x+7與x軸、y軸分別相交于點C、B,與直線y=
x相交于點A.
(1)求A點坐標;
(2)如果在y軸上存在一點P,使△OAP是以OA為底邊的等腰三角形,則P點坐標是 ;
(3)在直線y=﹣2x+7上是否存在點Q,使△OAQ的面積等于6?若存在,請求出Q點的坐標,若不存在,請說明理由.
![]()
【答案】(1)A點坐標是(2,3);(2)(0,
);(3)存在;點Q是坐標是(
,
)或(
,﹣
).
【解析】
(1)聯(lián)立方程,解方程即可求得;
(2)設P點坐標是(0,y),根據勾股定理列出方程,解方程即可求得;
(3)分兩種情況:①當Q點在線段AB上:作QD⊥y軸于點D,則QD=x,根據S△OBQ=S△OAB-S△OAQ列出關于x的方程解方程求得即可;②當Q點在AC的延長線上時,作QD⊥x軸于點D,則QD=-y,根據S△OCQ=S△OAQ-S△OAC列出關于y的方程解方程求得即可.
(1)解方程組:
得:![]()
∴A點坐標是(2,3);
(2)設P點坐標是(0,y),
∵△OAP是以OA為底邊的等腰三角形,
∴OP=PA,
∴22+(3﹣y)2=y2,
解得y=
,
∴P點坐標是(0,
),
故答案為(0,
);
(3)存在;
由直線y=﹣2x+7可知B(0,7),C(
,0),
∵S△AOC=
×
×3=
<6,S△AOB=
×7×2=7>6,
∴Q點有兩個位置:Q在線段AB上和AC的延長線上,設點Q的坐標是(x,y),
當Q點在線段AB上:作QD⊥y軸于點D,如圖①,則QD=x,
![]()
∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,
∴
OBQD=1,即
×7x=1,
∴x=
,
把x=
代入y=﹣2x+7,得y=
,
∴Q的坐標是(
,
),
當Q點在AC的延長線上時,作QD⊥x軸于點D,如圖②則QD=﹣y,
![]()
∴S△OCQ=S△OAQ﹣S△OAC=6﹣
=
,
∴
OCQD=
,即
×
×(﹣y)=
,
∴y=﹣
,
把y=﹣
代入y=﹣2x+7,解得x=
,
∴Q的坐標是(
,﹣
),
綜上所述:點Q是坐標是(
,
)或(
,﹣
).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△A
B
C
;
(2) 請畫出△ABC關于原點對稱的△A
B
C
;
(3) 在
軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰Rt△ABC中,∠BAC=90°,點E在AC上(且不與點A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)求證:△AEF是等腰直角三角形;
(2)如圖2,將△CED繞點C逆時針旋轉,當點E在線段BC上時,連接AE,求證:AF=
AE;
(3)如圖3,將△CED繞點C繼續(xù)逆時針旋轉,當平行四邊形ABFD為菱形,且△CED在△ABC的下方時,若AB=2
,CE=2,求線段AE的長.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下面圖1、圖2、圖3各正方形中的四個數(shù)之間的變化規(guī)律,按照這樣的變化規(guī)律,圖n中的M應為_____.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,∠C=90°,延長CA至點D,使AD=AB.設F為線段AB上一點,連接DF,以DF為斜邊作等腰Rt△DEF,且使AE⊥AB.
(1)求證:AE=AF+BC;
(2)當點F為BA延長線上一點,而其余條件保持不變,如圖2所示,試探究AE、AF、BC之間的數(shù)量關系,并說明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,在下列代數(shù)式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個數(shù)為( 。
![]()
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網絡公司推出了一系列上網包月業(yè)務,其中的一項業(yè)務是10M40元包240小時,且其中每月收取費用y(元)與上網時間x(小時)的函數(shù)關系如圖所示,小剛和小明家正好選擇了這項上網業(yè)務.
(1)當x≥240時,求y與x之間的函數(shù)關系式;
(2)若小剛家10月份上網200小時,則他家應付多少元上網費?
(3)若小明家10月份上網費用為62元,則他家該月的上網時間是多少小時?
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.
![]()
(1)概念理解:
如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.
(2)問題探究:
如圖2,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求
的值.
(3)應用拓展:
如圖3,已知l1∥l2,l1與l2之間的距離為2.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l2上,有一邊的長是BC的
倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l2于點D.求CD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,E,D是BC邊的三等分點,F是AC的中點,BF分別交AD,AE于點G,H,則BG∶GH∶HF等于( )
![]()
A. 1∶2∶3 B. 3∶5∶2 C. 5∶3∶2 D. 5∶3∶1
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com