分析 點(diǎn)點(diǎn)的兩個(gè)結(jié)論:①利用三角形的角平分線和三角形的內(nèi)角和即可得出結(jié)論;
②先判斷出△PAG≌△PAF(SAS)得出∠AFP=∠AGP,結(jié)合同角的補(bǔ)角相等即可得出∠BGP=∠BEP,進(jìn)而判斷出△BPG≌△BPE(AAS),即可得出結(jié)論;
(1)由角平分線和平行線整體求出∠MAB+∠NBA,從而得到∠APB=90°,最后用等邊對(duì)等角,即可.
(2)先根據(jù)條件求出AF,F(xiàn)G,求出∠FAG=60°,最后分兩種情況討論計(jì)算.
解答 解:點(diǎn)點(diǎn)的結(jié)論:①∵∠ACB=60°,
∴∠BAC+∠ABC=120°,
∵∠MAB與∠NBA的平分線分別交射線BN,AM于點(diǎn)E,F(xiàn),
∴∠PAB+∠PBA=$\frac{1}{2}$(∠PAB+∠PBA)=60°,
∴∠APB=120°,
②如圖,
在AB上取一點(diǎn)G,使AG=AF,
∵AE是∠BAM的角平分線,
∴∠PAG=∠PAF,
在△PAG和△PAF中,$\left\{\begin{array}{l}{AF=AG}\\{∠PAF=∠PAB}\\{AP=AP}\end{array}\right.$,
∴△PAG≌△PAF(SAS),
∴∠AFP=∠AGP,
∵∠EPF=∠APB=120°,∠ACB=60°,
∴∠EPF+∠ACB=180°,
∴∠PFC+∠PEC=180°,
∵∠PFC+∠AFP=180°,
∴∠PEC=∠AFP,
∴∠PEC=∠AGP,
∵∠AGP+∠BGP=180°,
∴∠PEC+∠BGP=180°,
∵∠PEC+∠PEB=180°,
∴∠BGP=∠BEP,
∵BF是∠ABC的角平分線,
∴∠PBG=∠PBE,
在△BPG和△BPE中,$\left\{\begin{array}{l}{∠BGP=∠BEP}\\{∠PBG=∠PBE}\\{BP=BP}\end{array}\right.$,
∴△BPG≌△BPE(AAS),
∴BG=BE,
∴AF+BE=AB.
(1)原命題不成立,新結(jié)論為:∠APB=90°,AF+BE=2AB(或AF=BE=AB),
理由:∵AM∥BN,
∴∠MAB+∠NBA=180°,
∵AE,BF分別平分∠MAB,NBA,
∴∠EAB=$\frac{1}{2}$∠MAB,∠FBA=$\frac{1}{2}$∠NBA,
∴∠EAB+∠FBA=$\frac{1}{2}$(∠MAB+∠NBA)=90°,
∴∠APB=90°,
∵AE平分∠MAB,
∴∠MAE=∠BAE,
∵AM∥BN,
∴∠MAE=∠BAE,
∴∠BAE=∠BEA,
∴AB=BE,
同理:AF=AB,
∴AF+BE=2AB(或AF=BE=AB);
(2)如圖1,![]()
過(guò)點(diǎn)F作FG⊥AB于G,
∵AF=BE,AF∥BE,
∴四邊形ABEF是平行四邊形,
∵AF+BE=16,
∴AB=AF=BE=8,
∵32$\sqrt{3}$=8×FG,
∴FG=4$\sqrt{3}$,
在Rt△FAG中,AF=8,
∴∠FAG=60°,
當(dāng)點(diǎn)G在線段AB上時(shí),∠FAB=60°,
當(dāng)點(diǎn)G在線段BA延長(zhǎng)線時(shí),∠FAB=120°,
①如圖2,![]()
當(dāng)∠FAB=60°時(shí),∠PAB=30°,
∴PB=4,PA=4$\sqrt{3}$,
∵BQ=5,∠BPA=90°,
∴PQ=3,
∴AQ=4$\sqrt{3}$-3或AQ=4$\sqrt{3}$+3.
②如圖3,![]()
當(dāng)∠FAB=120°時(shí),∠PAB=60°,∠FBG=30°,
∴PB=4$\sqrt{3}$,
∵PB=4$\sqrt{3}$>5,
∴線段AE上不存在符合條件的點(diǎn)Q,
∴當(dāng)∠FAB=60°時(shí),AQ=4$\sqrt{3}$-3或4$\sqrt{3}$+3.
點(diǎn)評(píng) 此題是四邊形綜合題,主要考查了平行線的性質(zhì),角平分線的性質(zhì),直角三角形的性質(zhì),勾股定理,解本題的關(guān)鍵是用勾股定理計(jì)算線段.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 0個(gè) | B. | 1個(gè) | C. | 2個(gè) | D. | 3個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | ||||
| C. | D. |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | AO上 | B. | OB上 | C. | BC上 | D. | CD上 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 這次比賽的全程是500米 | |
| B. | 乙隊(duì)先到達(dá)終點(diǎn) | |
| C. | 比賽中兩隊(duì)從出發(fā)到1.1分鐘時(shí)間段,乙隊(duì)的速度比甲隊(duì)的速度快 | |
| D. | 乙與甲相遇時(shí)乙的速度是375米/分鐘 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com