【題目】如圖,點(diǎn)E是邊長(zhǎng)為2的正方形ABCD的邊BC上的一動(dòng)點(diǎn)(不與端點(diǎn)重合),將△ABE沿AE翻折至△AFE的位置,若△CDF是等腰三角形,則BE=________.
![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板
與
(其中
,
,
)如圖擺放,
中
所對(duì)的直角邊與
的斜邊恰好重合。以
為直徑的圓經(jīng)過點(diǎn)C,且與
相交于點(diǎn)E,連接
,連接
并延長(zhǎng)交
于F.
![]()
(1)求證:
平分
;
(2)求
與
的面積的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 問題與探索
問題情境:課堂上,老師讓同學(xué)們以“菱形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如圖(1),將一張菱形紙片ABCD(∠BAD>90°)沿對(duì)角線AC剪開,得到△ABC和△ACD.
操作發(fā)現(xiàn):
(1)將圖(1)中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)角α,使α=∠BAC,得到如圖(2)所示的△AC′D,分別延長(zhǎng)BC和DC′交于點(diǎn)E,則四邊形ACEC′的形狀是 .
(2)創(chuàng)新小組將圖(1)中的△ACD以點(diǎn)A為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn)角α,使α=2∠BAC,得到如圖(3)所示的△AC′D,連接DB、C′C,得到四邊形BCC′D,發(fā)現(xiàn)它是矩形,請(qǐng)證明這個(gè)結(jié)論.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔P的北偏東55方向,距離燈塔2海里的點(diǎn)A處,如果海輪沿正南方向航行到燈塔的正東方向,海輪航行的距離AB長(zhǎng)是( )
![]()
A.2cos55o海里B.
海里C.2sin55海里D.
海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明同學(xué)利用寒假30天時(shí)間販賣草莓,了解到某品種草莓成本為10元/千克,在第
天的銷售量與銷售單價(jià)如下(每天內(nèi)單價(jià)和銷售量保持一致):
銷售量 |
|
銷售單價(jià) | 當(dāng) |
當(dāng) |
設(shè)第
天的利潤(rùn)
元.
(1)請(qǐng)計(jì)算第幾天該品種草莓的銷售單價(jià)為25元/千克?
(2)這30天中,該同學(xué)第幾天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?注:利潤(rùn)=(售價(jià)-成本)×銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)D為銳角△ABC內(nèi)一點(diǎn),∠ADB=∠ACB+90°,過點(diǎn)B作BE⊥BD,BE=BD,連接EC.
![]()
(1)求∠CAD+∠CBD的度數(shù);
(2)若
,
①求證:△ACD∽△BCE;
②求
的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形
中,
于點(diǎn)
,點(diǎn)
,
,
,
分別為邊
,
,
,
的中點(diǎn),順次連接
,
,
,
,則四邊形
是______.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著城市化建設(shè)的發(fā)展,交通擁堵成為上班高峰時(shí)難以避免的現(xiàn)象.為了解龍泉驛某條道路交通擁堵情況,龍泉某中學(xué)同學(xué)經(jīng)實(shí)地統(tǒng)計(jì)分析研究表明:當(dāng)
時(shí),車流速度v(千米/小時(shí))是車流密度x(輛/千米)的一次函數(shù).當(dāng)該道路的車流密度達(dá)到220輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度為95輛/千米時(shí),車流速度為50千米/小時(shí).
(1)當(dāng)
時(shí),求車流速度v(千米/小時(shí))與車流密度x(輛/千米)的函數(shù)關(guān)系式;
(2)為使該道路上車流速度大于40千米/小時(shí)且小于60千米/小時(shí),應(yīng)控制該道路上的車流密度在什么范圍內(nèi)?
(3)車流量(輛/小時(shí))是單位時(shí)間內(nèi)通過該道路上某觀測(cè)點(diǎn)的車輛數(shù),即:車流量=車流速度×車流密度.當(dāng)
時(shí),求該道路上車流量y的最大值.此時(shí)車流速度為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y=
x刻畫.
![]()
(1)請(qǐng)用配方法求二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);
(3)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點(diǎn)M(M與P不重合),△MOA的面積等于△POA的面積.請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com