| A. | y=$\frac{1}{4}$(x+3)2 | B. | y=$\frac{1}{4}$(x-3)2 | C. | y=-$\frac{1}{4}$(x+3)2 | D. | y=-$\frac{1}{4}$(x-3)2 |
分析 利用B、D關(guān)于y軸對稱,CH=1cm,BD=2cm可得到D點坐標為(1,1),由AB=4cm,最低點C在x軸上,則AB關(guān)于直線CH對稱,可得到左邊拋物線的頂點C的坐標為(-3,0),于是得到右邊拋物線的頂點C的坐標為(3,0),然后設(shè)頂點式利用待定系數(shù)法求拋物線的解析式.
解答 解:∵高CH=1cm,BD=2cm,且B、D關(guān)于y軸對稱,
∴D點坐標為(1,1),
∵AB∥x軸,AB=4cm,最低點C在x軸上,
∴AB關(guān)于直線CH對稱,
∴左邊拋物線的頂點C的坐標為(-3,0),
∴右邊拋物線的頂點F的坐標為(3,0),
設(shè)右邊拋物線的解析式為y=a(x-3)2,
把D(1,1)代入得1=a×(1-3)2,解得a=$\frac{1}{4}$,
∴右邊拋物線的解析式為y=$\frac{1}{4}$(x-3)2,
故選:B.
點評 本題考查了二次函數(shù)的應(yīng)用:利用實際問題中的數(shù)量關(guān)系與直角坐標系中線段對應(yīng)起來,再確定某些點的坐標,然后利用待定系數(shù)法確定拋物線的解析式,再利用拋物線的性質(zhì)解決問題.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 77 | B. | 78 | C. | 78.5 | D. | 79 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 77.23×104 | B. | 7.72×105 | C. | 7.7×105 | D. | 77.2×104 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:選擇題
| A. | 0.668×109 | B. | 6.68×10-9 | C. | 6.68×109 | D. | 66.8×108 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com