欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 初中數學 > 題目詳情
(2007•河南)為了調查某小區(qū)居民的用水情況,隨機抽查了10戶家庭的月用水量,結果如下表:
月用水量(噸)4569
戶數3421
則關于這10戶家庭的月用水量,下列說法錯誤的是( )
A.中位數是5噸
B.眾數是5噸
C.極差是3噸
D.平均數是5.3噸
【答案】分析:根據中位數的確定方法,將一組數據按大小順序排列,位于最中間的兩個的平均數或最中間一個數據是中位數,眾數的定義是在一組數據中出現次數最多的就是眾數,極差是一組數據中最大值與最小值的差,運用加權平均數求出即可.
解答:解:∵這10個數據是:4,4,4,5,5,5,5,6,6,9;
∴中位數是:(5+5)÷2=5噸,故A正確;
∴眾數是:5噸,故B正確;
∴極差是:9-4=5噸,故C錯誤;
∴平均數是:(3×4+4×5+2×6+9)÷10=5.3噸,故D正確.
故選C.
點評:此題主要考查了極差與中位數和眾數等知識,準確的記憶以上定義是解決問題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年江蘇省連云港市中考數學原創(chuàng)試卷大賽(23)(解析版) 題型:解答題

(2007•河南)如圖,對稱軸為直線x=的拋物線經過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年中考復習針對性訓練 綜合壓軸題(解析版) 題型:解答題

(2007•河南)如圖,對稱軸為直線x=的拋物線經過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年湖北省武漢市中考數學模擬試卷(1)(解析版) 題型:解答題

(2007•河南)如圖,對稱軸為直線x=的拋物線經過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年江蘇省蘇州市吳江市震澤中學中考數學模擬試卷(一)(解析版) 題型:解答題

(2007•河南)如圖,對稱軸為直線x=的拋物線經過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009-2010學年湖南省永州市初中校長研究會常務理事單位初三聯考試卷(解析版) 題型:解答題

(2007•河南)如圖,對稱軸為直線x=的拋物線經過點A(6,0)和B(0,4).
(1)求拋物線解析式及頂點坐標;
(2)設點E(x,y)是拋物線上一動點,且位于第四象限,四邊形OEAF是以OA為對角線的平行四邊形,求平行四邊形OEAF的面積S與x之間的函數關系式,并寫出自變量x的取值范圍;
①當平行四邊形OEAF的面積為24時,請判斷平行四邊形OEAF是否為菱形?
②是否存在點E,使平行四邊形OEAF為正方形?若存在,求出點E的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案