【題目】如圖所示,A,B,C分別表示三個(gè)村莊,AB=1000米,BC=600米,AC=800米,在社會(huì)主義新農(nóng)村建設(shè)中,為了豐富群眾生活,擬建一個(gè)文化活動(dòng)中心,要求這三個(gè)村莊到活動(dòng)中心的距離相等,則活動(dòng)中心P的位置應(yīng)在( )![]()
A.AB中點(diǎn)
B.BC中點(diǎn)
C.AC中點(diǎn)
D.∠C的平分線與AB的交點(diǎn)
【答案】A
【解析】因?yàn)锳B=1000米,BC=600米,AC=800米,所以AB2=BC2+AC2,所以△ABC是直角三角形,∠C=90度.因?yàn)橐筮@三個(gè)村莊到活動(dòng)中心的距離相等,所以活動(dòng)中心P的位置應(yīng)在△ABC三邊垂直平分線的交點(diǎn)處,也就是△ABC外心處,又因?yàn)椤鰽BC是直角三角形,所以它的外心在斜邊AB的中點(diǎn)處,
所以答案是:A.
【考點(diǎn)精析】利用三角形的外接圓與外心對(duì)題目進(jìn)行判斷即可得到答案,需要熟知過(guò)三角形的三個(gè)頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做三角形的外心.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)統(tǒng)計(jì)了每個(gè)營(yíng)業(yè)員在某月的銷(xiāo)售額,繪制了如下的條形統(tǒng)計(jì)圖以及不完整的扇形統(tǒng)計(jì)圖:![]()
解答下列問(wèn)題:
(1)設(shè)營(yíng)業(yè)員的月銷(xiāo)售額為x(單位:萬(wàn)元),商場(chǎng)規(guī)定:當(dāng)x<15時(shí)為不稱(chēng)職,當(dāng)15≤x<20時(shí),為基本稱(chēng)職,當(dāng)20≤x<25為稱(chēng)職,當(dāng)x≥25時(shí)為優(yōu)秀.則扇形統(tǒng)計(jì)圖中的a= , b= .
(2)所有營(yíng)業(yè)員月銷(xiāo)售額的中位數(shù)和眾數(shù)分別是多少?
(3)為了調(diào)動(dòng)營(yíng)業(yè)員的積極性,決定制定一個(gè)月銷(xiāo)售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡到達(dá)或超過(guò)這個(gè)標(biāo)準(zhǔn)的營(yíng)業(yè)員將受到獎(jiǎng)勵(lì).如果要使得營(yíng)業(yè)員的半數(shù)左右能獲獎(jiǎng),獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬(wàn)元?并簡(jiǎn)述其理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)A坐標(biāo)為(2,0),以O(shè)A為邊在第一象限內(nèi)作等邊△OAB,點(diǎn)C為x軸上一動(dòng)點(diǎn),且在點(diǎn)A右側(cè),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,連接AD交BC于E.
![]()
(1)①直接回答:△OBC與△ABD全等嗎?
②試說(shuō)明:無(wú)論點(diǎn)C如何移動(dòng),AD始終與OB平行;
(2)當(dāng)點(diǎn)C運(yùn)動(dòng)到使AC2=AEAD時(shí),如圖2,經(jīng)過(guò)O、B、C三點(diǎn)的拋物線為y1.試問(wèn):y1上是否存在動(dòng)點(diǎn)P,使△BEP為直角三角形且BE為直角邊?若存在,求出點(diǎn)P坐標(biāo);若不存在,說(shuō)明理由;
(3)在(2)的條件下,將y1沿x軸翻折得y2,設(shè)y1與y2組成的圖形為M,函數(shù)
的圖象l與M有公共點(diǎn).試寫(xiě)出:l與M的公共點(diǎn)為3個(gè)時(shí),m的取值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB、CD分別表示甲乙兩建筑物的高,BA⊥AD,CD⊥DA,垂足分別為A、D.從D點(diǎn)測(cè)到B點(diǎn)的仰角α為60°,從C點(diǎn)測(cè)得B點(diǎn)的仰角β為30°,甲建筑物的高AB=30米
(1)求甲、乙兩建筑物之間的距離AD.
(2)求乙建筑物的高CD.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小麗同學(xué)要畫(huà)∠AOB的平分線,卻沒(méi)有量角器和圓規(guī),于是她用三角尺按下面方法畫(huà)角平分線:![]()
①在∠AOB的兩邊上,分別取OM=ON;
②分別過(guò)點(diǎn)M、N作OA、OB的垂線,交點(diǎn)為P;
③畫(huà)射線OP,則OP為∠AOB的平分線.
(1)請(qǐng)問(wèn):小麗的畫(huà)法正確嗎?試證明你的結(jié)論;
(2)如果你現(xiàn)在只有刻度尺,能否畫(huà)一個(gè)角的角平分線?請(qǐng)你在備用圖中試一試.(不需要寫(xiě)作法,但是要讓讀者看懂,你可以在圖中標(biāo)明數(shù)據(jù))
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com