【題目】已知
的三個(gè)頂點(diǎn)的坐標(biāo)分別為
,
,
,以原點(diǎn)
為位似中心,相似比為
,將
放大,寫出點(diǎn)
、
、
位似變換后的對(duì)應(yīng)點(diǎn)的坐標(biāo)________.
【答案】
,
,
或
,
,![]()
【解析】
若位似比是k,則原圖形上的點(diǎn)(x,y),經(jīng)過(guò)位似變化得到的對(duì)應(yīng)點(diǎn)的坐標(biāo)是(kx,ky)或(﹣kx,﹣ky).
A(2,3)以原點(diǎn)O為位似中心,相似比為2,將△ABC放大,則A的對(duì)應(yīng)點(diǎn)的坐標(biāo)是A的橫縱坐標(biāo)同時(shí)乘以位似比2,或﹣2.因而對(duì)應(yīng)點(diǎn)的坐標(biāo)是(4,6)或(﹣4,﹣6),則點(diǎn)A、B、C位似變換后的對(duì)應(yīng)點(diǎn)的坐標(biāo)(4,6),(4,2),(12,4)或(﹣4,﹣6),(﹣4,﹣2),(﹣12,﹣4).
故答案為:(4,6),(4,2),(12,4)或(﹣4,﹣6),(﹣4,﹣2),(﹣12,﹣4).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.
(1)求證:AE平分∠BAC;
(2)若AD=2,EC=
,∠BAC=60°,求⊙O的半徑.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A點(diǎn)的坐標(biāo)為(18,0),B點(diǎn)的坐標(biāo)為(0,24).
(1)求AB的值;
(2)點(diǎn)C在OA上,且BC平分∠OBA,求點(diǎn)C的坐標(biāo);
(3)在(2)的條件下,點(diǎn)M在第三象限,點(diǎn)D為y軸上的一個(gè)點(diǎn),連接DM交x軸于點(diǎn)H,連接CM,點(diǎn)F為BC的中點(diǎn),點(diǎn)E為AD的中點(diǎn),AD與BC交于點(diǎn)G,,點(diǎn)H為DM的中點(diǎn),當(dāng)∠MCG-∠DGF=∠OAB,且AD=CM時(shí),求線段EF的長(zhǎng).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形
,
,
,
是
上一動(dòng)點(diǎn),
、
、
分別是
、
、
的中點(diǎn).
(1)求證:四邊形
是平行四邊形;
(2)當(dāng)
為何值時(shí),四邊形
是菱形,說(shuō)明理由.
(3)四邊形
有可能是矩形嗎?若有可能,求出
的長(zhǎng);若不可能,請(qǐng)說(shuō)明理由.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD,AD∥BC,OE=OF,圖中全等三角形共有( 。
![]()
A.6對(duì)B.5對(duì)C.4對(duì)D.3對(duì)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)
且
為
軸上點(diǎn)
右側(cè)的動(dòng)點(diǎn),以
為腰作等腰
,使
直線
交
軸于點(diǎn)
.
(1)求證:
;
(2)求證:
;
(3)當(dāng)點(diǎn)
運(yùn)動(dòng)時(shí),點(diǎn)
在
軸上的位置是否發(fā)生改變,為什么?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在正方形ABCD外取一點(diǎn)E,連接AE、BE、DE.過(guò)點(diǎn)A作AE的垂線交DE于點(diǎn)P.若AE=AP=1,PD=2,下列結(jié)論:①EB⊥ED;②∠AEB=135°;③S正方形ABCD=5+2
;④PB=2;其中正確結(jié)論的序號(hào)是( 。
![]()
A.①③④B.②③④C.①②④D.①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題探究】
(
)如圖①,點(diǎn)
是正
高
上的一定點(diǎn),請(qǐng)?jiān)?/span>
上找一點(diǎn)
,使
,并說(shuō)明理由.
(
)如圖②,點(diǎn)
是邊長(zhǎng)為
的正
高
上的一動(dòng)點(diǎn),求
的最小值.
【問(wèn)題解決】
(
)如圖③,
、
兩地相距
,
是筆直第沿東西方向向兩邊延伸的一條鐵路.今計(jì)劃在鐵路線
上修一個(gè)中轉(zhuǎn)站
,再在
間修一條筆直的公路.如果同樣的物資在每千米公路上的運(yùn)費(fèi)是鐵路上的兩倍.那么,為使通過(guò)鐵路由
到
再通過(guò)公路由
到
的總運(yùn)費(fèi)達(dá)到最小值,請(qǐng)確定中轉(zhuǎn)站
\的位置,并求出
的長(zhǎng).(結(jié)果保留根號(hào))
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果一個(gè)四邊形的兩條對(duì)角線相等且相互垂直,則稱這個(gè)四邊形為“等垂四邊形”.
如圖1,四邊形ABCD中,若AC=BD,AC⊥BD,則稱四邊形ABCD為“等垂四邊形.根據(jù)等垂四邊形對(duì)角線互相垂直的特征可得等垂四邊形的一個(gè)重要性質(zhì):等垂四邊形的面積等于兩條對(duì)角線乘積的一半.根據(jù)以上信息解答下列問(wèn)題:
(1)矩形 “等垂四邊形”(填“是”或“不是”);
(2)如圖2,已知⊙O的內(nèi)接四邊形ABCD是等垂四邊形,若⊙O的半徑為6,∠ADC=60°,求四邊形ABCD的面積;
(3)如圖3,已知⊙O的內(nèi)接四邊形ABCD是等垂四邊形,作OM⊥AD于M.請(qǐng)猜想OM與BC的數(shù)量關(guān)系,并證明你的結(jié)論.
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com