分析 首先證明AB=AC=a,根據條件可知PA=AB=AC=a,求出⊙D上到點A的最大距離即可解決問題.
解答 解:
∵A(1,0),B(1-a,0),C(1+a,0)(a>0),
∴AB=1-(1-a)=a,CA=a+1-1=a,
∴AB=AC,
∵∠BPC=90°,
∴PA=AB=AC=a,
如圖延長AD交⊙D于P′,此時AP′最大,
∵A(1,0),D(4,4),
∴AD=5,
∴AP′=5+1=6,
∴a的最大值為6.
故答案為6.
點評 本題考查圓、最值問題、直角三角形性質等知識,解題的關鍵是發(fā)現(xiàn)PA=AB=AC=a,求出點P到點A的最大距離即可解決問題,屬于中考?碱}型.
科目:初中數學 來源: 題型:選擇題
| A. | 4km | B. | 2$\sqrt{3}$km | C. | 2$\sqrt{2}$km | D. | ($\sqrt{3}$+1)km |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com