如圖,點E是菱形ABCD對角線CA的延長線上任意一點,以線段AE為邊作一個菱形AEF
G,且菱形AEFG∽菱形ABCD,連接EB,GD.
(1)求證:EB=GD;
(2)若∠DAB=60°,AB=2,AG=
,求GD的長.
![]()
科目:初中數(shù)學 來源: 題型:
從廣州到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程是400千米,普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時)是普通列車平均速度(千米/時)的2.5倍,且乘坐高鐵所需時間比乘坐普通列車所需時間縮短3小時,求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,點P為AB邊上一動點,若△PAD與△PBC是相似三角形,則滿足條件的點P的個數(shù)是( 。
![]()
A. 1個 B.2個 C.3個 D. 4個![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知在Rt△OAC中,O為坐標原點,直角頂點C在x軸的正半軸上,反比例函數(shù)y=
(k≠0)在第一象限的圖象經(jīng)過OA的中點B,交AC于點D,連接OD.若△OCD∽△ACO,則直線OA的解析式為 .
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,在Rt△ABC中,∠C=90°,Rt△BAP中,∠BAP=90°,已知∠CBO=∠ABP,BP交AC于點O,E為AC上一點,且AE=OC.
(1)求證:AP=AO;
(2)求證:PE⊥AO;
(3)當AE=
AC,AB=10時,求線段BO的長度.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖.在△ABC中,BC>AC,點D在BC上,且DC=AC,∠ACB的平分線CF交AD于點F,點E是AB的中點,連接EF.
(1)求證:EF∥BC;
(2)若四邊形BDFE的面積為6,求△ABD的面積.
![]()
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
已知:如圖,四邊形ABCD為平行四邊形,以CD為直徑作⊙O,⊙O與邊BC相交于點F,⊙O的切線DE與邊AB相交于點E,且AE=3EB.
(1)求證:△ADE∽△CDF;
(2)當CF:FB=1:2時,求⊙O與▱ABCD的面積之比.
![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com