【題目】已知甲、乙兩地相距160km,
、
兩車(chē)分別從甲、乙兩地同時(shí)出發(fā),
車(chē)速度為85km/h,
車(chē)速度為65km/h.
(1)
、
兩車(chē)同時(shí)同向而行,
車(chē)在后,經(jīng)過(guò)幾小時(shí)
車(chē)追上
車(chē)?
(2)
、
兩車(chē)同時(shí)相向而行,經(jīng)過(guò)幾小時(shí)兩車(chē)相距20km?
【答案】(1)經(jīng)過(guò)8小時(shí)A車(chē)追上B車(chē);(2)經(jīng)過(guò)
或1.2小時(shí)兩車(chē)相距20千米
【解析】
(1)設(shè)經(jīng)過(guò)x小時(shí)A車(chē)追上B車(chē),根據(jù)A行駛的路程比B多160千米列出方程并解答;
(2)設(shè)經(jīng)過(guò)a小時(shí)兩車(chē)相距20千米.分兩種情況進(jìn)行討論:①相遇前兩車(chē)相距20千米;②遇后兩車(chē)相距20千米.
解:(1)設(shè)經(jīng)過(guò)x小時(shí)A車(chē)追上B車(chē),根據(jù)題意得:
85x-65x=160,
解之得x=8,
答:經(jīng)過(guò)8小時(shí)A車(chē)追上B車(chē);
(2)設(shè)經(jīng)過(guò)a小時(shí)兩車(chē)相距20千米,分兩種情況:
①相遇前兩車(chē)相距20千米,列方程為:
85a+65a+20=160,
解之得a=
;
②相遇后兩車(chē)相距20千米,列方程為:
85a+65a-20=160 ,
解之得a=1.2 ,
答:經(jīng)過(guò)
或1.2小時(shí)兩車(chē)相距20千米.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為倡導(dǎo)“低碳生活”,常選擇以自行車(chē)作為代步工具,如圖1所示是一輛自行車(chē)的實(shí)物圖.車(chē)架檔CD與AD的長(zhǎng)分別為60cm,75cm,且AC⊥CD,垂足為C,座桿CE的長(zhǎng)為20cm,點(diǎn)A,C,E在同一條直線上,且∠CAB=75°,如圖2.
(1)求車(chē)架檔AC的長(zhǎng);
(2)求車(chē)座點(diǎn)E到車(chē)架檔AB的距離.
(結(jié)果精確到 1cm.參考數(shù)據(jù):sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)(1)班要從班級(jí)里數(shù)學(xué)成績(jī)較優(yōu)秀的甲、乙兩位學(xué)生中選拔一人參加“全國(guó)初中數(shù)學(xué)聯(lián)賽”,為此,數(shù)學(xué)老師對(duì)兩位同學(xué)進(jìn)行了輔導(dǎo),并在輔導(dǎo)期間測(cè)驗(yàn)了6次,測(cè)驗(yàn)成績(jī)?nèi)缦卤?單位:分):
次數(shù),1, 2, 3, 4, 5, 6
甲:79,78,84,81,83,75
乙:83,77,80,85,80,75
利用表中數(shù)據(jù),解答下列問(wèn)題:
(1)計(jì)算甲、乙測(cè)驗(yàn)成績(jī)的平均數(shù).
(2)寫(xiě)出甲、乙測(cè)驗(yàn)成績(jī)的中位數(shù).
(3)計(jì)算甲、乙測(cè)驗(yàn)成績(jī)的方差.(結(jié)果保留小數(shù)點(diǎn)后兩位)
(4)根據(jù)以上信息,你認(rèn)為老師應(yīng)該派甲、乙哪名學(xué)生參賽?簡(jiǎn)述理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=12,BC=16,將矩形ABCD沿EF折疊,使點(diǎn)B與點(diǎn)D重合,則折痕EF的長(zhǎng)為( )
![]()
A.14B.
C.
D.15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=4,BC=8,D,E是AB和BC上的動(dòng)點(diǎn),連接CD,DE則CD+DE的最小值為( )
![]()
A. 8 B.
C.
D. ![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的盒子中裝有a個(gè)除顏色外完全相同的紅球和白球,其中紅球有b個(gè),將盒中的球搖勻后從中任意摸出1個(gè)球,記錄顏色后將球放回盒中,重復(fù)進(jìn)行這過(guò)程,如表記錄了某班一次摸球?qū)嶒?yàn)情況:
摸球總數(shù)n | 400 | 1500 | 3500 | 7000 | 9000 | 14000 |
摸到紅球數(shù)m | 325 | 1336 | 3203 | 6335 | 8073 | 12628 |
摸到紅球的頻率(精確到0.001) | 0.813 | 0.891 | 0.915 | 0.905 | 0.897 | 0.902 |
(1)由此估計(jì)任意摸出1個(gè)球?yàn)榧t球的概率約是 (精確到0.1)
(2)實(shí)驗(yàn)結(jié)束后,小明發(fā)現(xiàn)了一個(gè)一般性的結(jié)論:盒子中共有a個(gè)球,其中紅球有b個(gè),則搖勻后從中任意摸出1個(gè)球?yàn)榧t球的概率P可以表示為
,這個(gè)結(jié)論也得到了老師的證實(shí)根據(jù)小明的發(fā)現(xiàn),若在該盒子中再放入除顏色外與原來(lái)的球完全相同的2個(gè)紅球和2個(gè)白球,搖勻后從中任意摸出1個(gè)球?yàn)榧t球的概率為P’,請(qǐng)通過(guò)計(jì)算比較P與P'的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將平行四邊形ABCD沿對(duì)角線BD進(jìn)行折疊,折疊后點(diǎn)C落在點(diǎn)F處,DF交AB于點(diǎn)E.
![]()
(1)求證:
;
(2)判斷AF與BD是否平行,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3).雙曲線y=
(x>0)的圖象經(jīng)過(guò)BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE.
(1)直接寫(xiě)出k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是OC邊上一點(diǎn),且FB⊥DE,求直線FB的解析式.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,函數(shù)
(
)的圖象經(jīng)過(guò)點(diǎn)
,AB⊥x軸于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱, CD⊥x軸于點(diǎn)D,△ABD的面積為8.
(1)求m,n的值;
(2)若直線
(k≠0)經(jīng)過(guò)點(diǎn)C,且與x軸,y軸的交點(diǎn)分別為點(diǎn)E,F,當(dāng)
時(shí),求點(diǎn)F的坐標(biāo).
![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com