如圖,經(jīng)過原點(diǎn)的拋物線
與
軸的另一個(gè)交點(diǎn)為A.過點(diǎn)
作直線
軸于點(diǎn)M,交拋物線于點(diǎn)B,過點(diǎn)B作直線BC∥
軸與拋物線交于點(diǎn)C(B、C不重合),連結(jié)CP.![]()
(1)當(dāng)
時(shí),求點(diǎn)A的坐標(biāo)及BC的長;
(2)當(dāng)
時(shí),連結(jié)CA,問
為何值時(shí)
?
(3)過點(diǎn)P作
且
,問是否存在
,使得點(diǎn)E落在坐標(biāo)軸上?若存在,求出所有滿足要求的
的值,并求出相對應(yīng)的點(diǎn)E坐標(biāo);若不存在,請說明理由.
(1)A(-4,0),BC=2;(2)
;(3)![]()
解析試題分析:(1)把m=2代入拋物線的解析式,令y=0解方程,得到的非0解即為和x軸交點(diǎn)的橫坐標(biāo),再求出拋物線的對稱軸方程,進(jìn)而求出BC的長;
(2)過點(diǎn)C作CH⊥x軸于點(diǎn)H(如圖1)由已知得∠ACP=∠BCH=90°,利用已知條件證明△ACH∽△PCB,根據(jù)相似的性質(zhì)得到
,再用含有m的代數(shù)式表示出BC,CH,BP,代入比例式即可求出m的值;
(3)存在,本題要分當(dāng)m>1時(shí),BC=2(m-1),PM=m,BP=m-1和當(dāng)0<m<1時(shí),BC=2(1-m),PM=m,BP=1-m,兩種情況分別討論,再求出滿足題意的m值和相對應(yīng)的點(diǎn)E坐標(biāo).
(1)當(dāng)m=2時(shí),
,
令y=0,得
,∴![]()
∴A(-4,0)
當(dāng)x=-1時(shí),y=3,∴B(-1,3)
∵拋物線
的對稱軸為直線x=-2,
又∵B,C關(guān)于對稱軸對稱,
∴BC=2.![]()
![]()
∴
∴
∴
;
(3)∵B,C不重合,∴m≠1.(I)當(dāng)m>1時(shí),BC=2(m-1),PM=m, BP=m-1.
(i)若點(diǎn)E在x軸上(如圖1),
∵∠CPE=90°,∴∠MPE+∠BPC=∠MPE+∠MEP=90°,
∴∠BPC=∠MEP. 又∵∠CPB=∠PME=90°,PC=EP
∴△BPC≌△MEP,∴BC=PM, ∴2(m-1)=m,
∴m=2,此時(shí)點(diǎn)E的坐標(biāo)是(-2,0).
(II)當(dāng)0<m<1時(shí),BC=2(1-m),PM=m, BP=1-m,
(i)若點(diǎn)E在x軸上, 易證△BPC≌△MEP,∴BC=PM,
∴2(1-m)=m,∴
,此時(shí)點(diǎn)E的坐標(biāo)是
;![]()
考點(diǎn):函數(shù)的綜合題
點(diǎn)評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
| 1 | 20 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省江陰市顧山九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:選擇題
.如圖,在10×10的網(wǎng)格中,每個(gè)小方格都是邊長為1的小正方形,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn).若拋物線經(jīng)過圖中的三個(gè)格點(diǎn),則以這三個(gè)格點(diǎn)為頂點(diǎn)的三角形稱為拋物線的“內(nèi)接格點(diǎn)三角形”.以O為坐標(biāo)原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,若拋物線與網(wǎng)格對角線OB的兩個(gè)交點(diǎn)之間的距離為
,且這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn)是拋物線的內(nèi)接格點(diǎn)三角形的三個(gè)頂點(diǎn),則滿足上述條件且對稱軸平行于y軸的拋物線條數(shù)是
![]()
A.13?????? B.14? ???? C.15?????? D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年浙江省湖州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇南通卷)數(shù)學(xué)(解析版) 題型:解答題
如圖,經(jīng)過點(diǎn)A(0,-4)的拋物線y=x2+bx+c與x軸相交于點(diǎn)B(-0,0)和C,O為坐標(biāo)原點(diǎn).
(1)求拋物線的解析式;
(2)將拋物線y=x2+bx+c向上平移個(gè)單位長度、再向左平移m(m>0)個(gè)單位長度,得到新拋物
線.若新拋物線的頂點(diǎn)P在△ABC內(nèi),求m的取值范圍;
(3)設(shè)點(diǎn)M在y軸上,∠OMB+∠OAB=∠ACB,求AM的長.
![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com