【題目】長方形
(
)的對角線
、
相交于點(diǎn)
,則其中全等的三角形有( )
A.2對B.4對C.6對D.8對
【答案】D
【解析】
根據(jù)平行四邊形的判定推四邊形ABCD是平行四邊形,推出OA=OC,OD=OB,根據(jù)全等三角形的判定定理SAS,SSS,推出即可.
解:共8對,△ABD≌△CDB≌△ACD≌△CAB,△AOD≌△COB,△AOB≌△COD,
![]()
理由是:在△ABD和△CDB中,
,
∴△ABD≌△CDB,
同理△ACD≌△CAB,
在△ABD和△ACD中,
,
∴△ABD≌△ACD,
∴△ABD≌△CDB≌△ACD≌△CAB
∵AB=CD,AD=BC,
∴四邊形ABCD是平行四邊形,
∴OA=OC,OB=OD,
∵∠AOB=∠COD,
∴△AOB≌△COD,
同理△AOD≌△COB,
故選:D.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖
所示,在A,B兩地間有一車站C,一輛汽車從A地出發(fā)經(jīng)C站勻速駛往B地
如圖
是汽車行駛時(shí)離C站的路程
千米
與行駛時(shí)間
小時(shí)
之間的函數(shù)關(guān)系的圖象.
填空:
______km,AB兩地的距離為______km;
求線段PM、MN所表示的y與x之間的函數(shù)表達(dá)式;
求行駛時(shí)間x在什么范圍時(shí),小汽車離車站C的路程不超過60千米?
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=
.
其中正確的序號是 (把你認(rèn)為正確的都填上).
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某跳水隊(duì)為了解運(yùn)動(dòng)員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運(yùn)動(dòng)員的年齡(單位:歲),繪制出如下的統(tǒng)計(jì)圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:
![]()
(1)本次接受調(diào)查的跳水運(yùn)動(dòng)員人數(shù)為 ,圖①中
的值為 ;
(2)求統(tǒng)計(jì)的這組跳水運(yùn)動(dòng)員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖已知正比例函數(shù)圖像經(jīng)過點(diǎn)A(2,3)、B(m,6).
![]()
(1)求正比例函數(shù)的解析式.
(2)求m的值及A、B兩點(diǎn)之間的距離。
(3)分別過點(diǎn)A與點(diǎn)B作y軸的平行線,與反比例函數(shù)在第一象限內(nèi)的分支分別交于點(diǎn)C、D(點(diǎn)C、D均在點(diǎn)A、B下方),若BD=5AC.求反比例函數(shù)的解析式,并求出四邊形ACDB的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,
,
是
、
的角平分線交點(diǎn),
是
、
外角平分線交點(diǎn),則
______
,
_____
,聯(lián)結(jié)
,則
______
,點(diǎn)
____(選填“在”、“不在”或“不一定在”)直線
上.
![]()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC 中,點(diǎn) D,E 分別在∠ABC 和∠ACB 的平分線上,連接 BD,DE,EC,若∠D+∠E=295°, 則∠A 是( )
![]()
A.65°B.60°C.55°D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=kx+4(k≠0)與x軸、y軸分別交于點(diǎn)B,A,直線y=-2x+1與y軸交于點(diǎn)C,與直線y=kx+4交于點(diǎn)D,△ACD的面積是
.
![]()
(1)求直線AB的表達(dá)式;
(2)設(shè)點(diǎn)E在直線AB上,當(dāng)△ACE是直角三角形時(shí),求出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程mx2+(3﹣m)x﹣3=0(m為實(shí)數(shù),m≠0).
(1) 試說明:此方程總有兩個(gè)實(shí)數(shù)根.
(2) 如果此方程的兩個(gè)實(shí)數(shù)根都為正整數(shù),求整數(shù)m的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com